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ABSTRAK 

Fasa pandemik yang lalu telah menekankan kepentingan dan keperluan tindak balas 
yang segera dalam pelaksanaan polisi dan amalan bidang kesihatan, terutamanya 
apabila melibatkan pengenalan ubat baru. Salah satu langkah kritikal dalam pengenalan 
ubat baru adalah, analisis ulasan ubat, di mana maklum balas klinikal tentang 
penggunaan ubat dinilai, mengenal pasti risiko berpotensi, dan kesan-kesan sampingan. 
Walaubagaimanpun, saiz data yang besar, bentuk data yang tidak berstruktur dan 
penggunaan bahasa tabii menyebabkan analisis ulasan ubat yang segera secara tepat dan 
berkesan adalah suatu cabaran. Pembangunan terkini dalam pembelajaran mesin, 
khususnya pemprosesan bahasa tabii, memberikan peluang untuk menangani cabaran-
cabaran ini. Dalam kajian ini, data yang diperolehi daripada pangkalan data drugs.com 
dan drug.lib dianalisis dengan menggunakan lapan algoritma pembelajaran mesin iaitu 
Multinomial Naïve Bayes(MNB), Random Forest, Decision Tree, Extra Tree, Extreme 
Gradient Boost, Linear Support Vector Classifier(SVC), Logistic Regression, dan K-
Nearest Neighbour. Bagi mengkaji kesan fitur, algoritma dan pecahan data latihan/ujian 
pada skor-F1 dan masa, empat jenis fitur (bag-of-words (BOW), term frequency-inverse 
document frequency (tf-idf) unigram, bigram, dan trigram) dan 5 jenis pecahan 
latihan/ujian (50/50, 60/40, 70/30, 80/20, 90/10) telah digunakan. Keputusan kajian 
mendapati Linear SVC memiliki skor-F1 yang tertinggi, manakala MNB pula 
mengambil masa yang paling singkat. Selain itu, kajian juga mendapati bahawa 
pemilihan fitur memberikan impak kepada skor-F1 dan keseluruhan masa yang diambil 
oleh sesuatu algoritma bagi menyelesaikan turutan kod dimana pengunaan BOW 
memberikan skor-F1 yang tertinggi dan masa yang paling pendek. Secara 
keseluruhannya, kombinasi model linear SVC dengan pecahan 90/10 bersama tf-idf 
bigram memberikan keputusan yang paling optimum. Kajian ini memberikan 
pengetahuan yang berharga tentang impak fitur, pembahagian set data latihan/ujian, dan 
algoritma pada data ulasan ubat yang boleh digunapakai di dalam bidang kesihatan. 
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ABSTRACT 

The recent pandemic highlighted the importance and need for a quick response in the 
implementation of healthcare policies, and practices, especially when it comes to 
introduction of new drugs. Drug review analysis, where the clinical feedback on the 
drug usage is evaluated, identifying potential risks, and adverse effects is a critical step 
in this. However, as the data obtained is typically large in number, unstructured in form, 
and often expressed using natural language, processing it accurately, effectively and in 
time was challenging. The recent development in machine learning, specifically Natural 
Language processing, provided an opportunity for these challenges to be addressed. In 
this study, data obtained from drugs.com and drug.lib was analysed under eight different 
machine learning algorithms, Multinomial Naïve Bayes (MNB), Random Forest(RF), 
Decision Tree (DT), Extra Tree (ET), Extreme Gradient Boost (XGB), Linear Support 
Vector Classifier(SVC), Logistic Regression, and K-Nearest Neighbour(KNN). Four 
different feature extractors bag-of-words (BOW), term frequency-inverse document 
frequency (tf-idf) unigram, bigram and trigram, and 5 different train/test splits (50/50, 
60/40, 70/30, 80/20, 90/10) were also employed to study the effect of the different 
feature extractors, algorithms, and splits on the F1 -score and total time. Linear SVC 
had the highest F1 score, while MNB had the shortest time. It was observed that the 
choice of feature extractor had an impact on the F1 score and total time, with BOW 
having the highest F1 score and lowest time. Overall, the linear SVC with 90/10 split 
and tf-idf bigram combination was the most optimum approach. This study provided 
valuable insight on the impact of feature extractor, split and algorithm on drug review 
data which is particularly useful in the healthcare field.    
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CHAPTER I  

 

 

INTRODUCTION 

1.1 BACKGROUND 

The recent pandemic that ravaged globally not only disrupted the livelihood of the 

masses, but it also took a hefty toll on the healthcare system, highlighted the 

shortcomings and limitation of the current practises, specifically when it came to the 

introduction of new medication and treatments. The sudden demand for new vaccines 

and drugs, and the time pressure exposed the challenges associated with processing of 

clinical trials data. When large scale trials were conducted, there was a need for an 

accurate and fast way to process and analyse the data collected (Kashte et al. 2021). The 

multiple parallel trials conducted across the globe generated huge amounts of data that 

was not only limited to the adverse drug effects and other medical parameters, but also 

contained additional information such as demographics and geographical data. This 

large data sets, if used well, would be of utmost beneficial in the introduction of new 

drugs (Hiscott et al. 2020). 

Another lesson learned from the recent pandemic was on the public perception 

and the need for greater transparency. In Malaysia, the Ministry of Health (MoH) lead 

the way by making Covid-19 related raw data publicly available to the masses. The 

demand and expectation for information from the general public was not limited to 

merely gaining access to clinical data but, it also involved a feedback system where they 

can also provide real time valuable input back to the healthcare policymakers. It was 

also observed that the public expected that their feedback be taken seriously and in most 

cases, a personalised reply is provided (Lee et al. 2022). This was a crucial aspect when 

it came to introduction of new treatments and drugs as it not only resulted in an increase 

in consumer confidence and acceptance of the drugs, but it also lead to an effective 
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implementation of various healthcare policies, such as the national Covid -19 

vaccination policy introduced by MoH (Ain Umaira Md Shah et al. 2020). Artificial 

Intelligence and machine learning (ML) have woven themselves into the fabric of our 

daily lives, subtly and sometimes overtly shaping our experiences. From movies and 

music to news and products, AI-powered algorithms personalize content, catering to 

our individual preferences (Shuai Zhang et al. 2019). Virtual assistants like Siri and 

Alexa handle tasks like scheduling appointments, controlling smart home devices, and 

providing information - enhancing convenience and automating daily routines 

(Rajakumaran et al. 2023). Adaptive learning platforms powered by ML tailor 

educational content and pace to individual student needs, improving learning outcomes 

(Daugherty et al. 2022). Ride-sharing apps and smart traffic management systems 

powered by AI are optimizing routes and reducing congestion, impacting our daily 

commutes (Ang et al. 2022). Chatbots and automated systems handle basic customer 

inquiries, freeing up human agents for complex issues and improving overall 

efficiency(Ngai et al. 2021). From manufacturing robots to automated data analysis, AI 

is driving increased efficiency and productivity across various sectors (Jan et al. 2023). 

Artificial Intelligence algorithms are assisting doctors in analysing medical images and 

making diagnoses, potentially leading to earlier detection and improved outcomes 

(Huang et al. 2021). ML models are accelerating the drug discovery process, bringing 

us closer to faster development of life-saving medications (Choudhury et al. 2022). 

Tailoring treatment plans to individual patients based on vast data sets, AI holds 

promise for a future of precise and effective healthcare (Alowais et al. 2023) 

The digital age has witnessed an explosion of user-generated content on health 

and wellness, with online drug reviews taking centre stage. This readily available 

data, constantly growing with every shared experience, holds immense potential for 

understanding patient perspectives on various medications (Anjali & GK 2022). While 

clinical data relies on formal medical reports and records, online reviews provide 

insights through unfiltered, everyday language (Joshi & Abdelfattah 2021) which 

includes slang, emojis, or personal anecdotes. Deriving valuable knowledge about 

patient treatment responses from these large dataset reviews often hinges on time-

consuming, laborious manual reviews of  textual data, underscoring the need for 

automated analysis methods (Ling 2023). The rise of machine learning and NLP has 
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unlocked exciting possibilities for extracting crucial insights from online drug 

reviews, enhancing pharmacovigilance monitoring and proactive identification of 

potential drug safety concerns (Anjali & GK 2022). 

1.2 PROBLEM STATEMENT 

With the increased use of information technology, social media and other digital 

documentation and data gathering tools especially within the healthcare industry, a huge 

amount of data is amassed. These large datasets, often running into hundreds of 

thousands if not million data points contains important information that when put to use 

would greatly benefit and accelerate response time and enable a comprehensive drug 

review to be conducted prior to its release. However, these large data cannot be 

processed using conventional means, either manually or via low level spreadsheets. The 

full magnitude of information obtained in the data would not be realised in this way. 

Hence, a new problem is found, where although huge amounts of data is available, a 

new method and tool needs to be used to effectively make sense of it. 

The use of and access to information technology tools such as web-based data 

collection and feedback system is continuously growing. Locally, the collection of 

adverse drug reaction ADR reports on the Covid-19 vaccine via mysejahtera was an 

example where the consumer gets to directly input their feedback and reaction on certain 

drugs and vaccines to the relevant authorities. Besides resulting in huge amounts of 

data, the data obtained is also often unstructured in form. The use of natural language, 

conversational slang, non-numerical feedback and non-standard terminology add to the 

complexity in processing these information. This leads to a time-consuming process 

where each review and response needs to be evaluated manually, once again leading to 

not only delay in obtaining information but also a possible lower accuracy. 

Joshi and Abdelfattah (2021) had used similar method and drug review datasets 

for multi-label classification, however the study did not explore on the use of different 

features, sampling methods and machine learning models such as XGB and KNN.  
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1.3 RESEARCH OBJECTIVES 

1. To analyse the effect of different machine learning models and feature extraction 

techniques on drug review dataset 

2. To identify the best machine learning model and feature extraction technique in 

terms of F1-score and runtime 

1.4 RESEARCH SCOPE 

This study was focused on multi-label text classification of patient conditions based on 

online drug review dataset obtained from publicly available database (UCI Machine 

Learning Repository) which was last updated in 2018. Only top 10 conditions were 

selected for the study based on the reviews submitted by consumers in USA. Only eight 

machine learning classifiers (Multinomial Naïve Bayes, Linear Support Vector 

classifier, Logistic Regression, Random Forest, Extra Tree, Decision Tree, Extreme 

Gradient Boost and K-Nearest Neighbour) and four feature extraction techniques were 

utilized for the study. To ensure balanced class representation in both training and test 

data, we employed stratified sampling techniques, examining five split ratios: 90/10, 

80/20, 70/30, 60/40, and 50/50. Due to the limitations of accuracy in imbalanced 

datasets, F1-score, which considers both precision and recall, was chosen as the primary 

performance metric for this study. Besides that, to assess the computational speed time, 

the time taken to train and test each algorithm in Colab environment were recorded.  

1.5 PROJECT STRUCTURE 

This project is structured in a conventional format, split into 6 different chapters. 

Chapter 1 : Introduction, the overall background of the project, together with the 

research objectives and research scope and limitations were discussed. 

Chapter 2 : Literature Review presents a theoretical overview on key terms and 

aspects of machine learning and text classification approaches. Past research that 

utilised similar machine learning algorithm were also discussed. 
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Chapter 3 : Methodology. In this chapter, the overall methods used for this study 

was explained in detail. 

Chapter 4 : Results provides a graphical representation and a brief explanation 

of the results obtained from the different approaches applied. 

Chapter 5 : Discussion is where in depth discussions from an holistic perspective 

was done. Looking at the various aspects and comparing the results to past studies. 

Chapter 6 : Conclusion. This chapter highlights the general conclusion of the 

study and how it ties to the research objectives. Suggestions for future work and key 

contributions of this study was also discussed in this chapter. 
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CHAPTER II  

 

 

LITERATURE REVIEW 

2.1 INTRODUCTION TO DRUG REVIEW 

Pharmacovigilance, as defined by the World Health Organization (WHO), encompasses 

the activities of identifying, evaluating, understanding, and preventing Adverse Drug 

Reactions (ADRs) (Gawich & Alfonse 2022). While drugs undergo rigorous testing 

before approval, many adverse effects are only discovered after widespread use in the 

real world (Saad et al. 2021). User-generated drug reviews, often containing 

information on patient conditions, experiences, and side effects, offer a valuable source 

of data for pharmacovigilance efforts. The rapid growth of electronically accessible 

health data, coupled with the ability of Natural Language Processing (NLP) and 

machine learning to handle large volumes of text, has opened new avenues for 

pharmacological monitoring (Anjali & GK 2022). One application lies in drug selection 

accuracy. By analyzing user reviews and patient conditions, NLP and machine learning 

can help healthcare professionals identify the most effective drugs for specific 

situations. Text mining techniques can further aid this process by extracting data 

patterns, trends, and potential knowledge from user-generated reviews (Haryadi et al. 

2022). Classifying patient conditions based on drug reviews can not only reveal 

previously unknown ADRs but also alert healthcare professionals to potential risks 

associated with medications. Ultimately, selecting the right drug for a patient's 

condition not only improves treatment outcomes but also increases patient satisfaction 

and medication adherence (Haque et al. 2023) Therefore, careful selection of 

appropriate machine learning methods for drug review classification tasks is crucial for 

advancing pharmacovigilance efforts. 
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2.2 INTRODUCTION TO MACHINE LEARNING 

The promising field of machine learning (ML) has rapidly ascended to a prominent 

position within the burgeoning domain of artificial intelligence (AI). It is crucial to 

dispel the misconception that ML and AI are synonymous. As delineated by Russell 

and Norvig (2010), AI encompasses a broader spectrum of capabilities, including 

reasoning, problem-solving, and adaptation. Within this framework, ML emerges as a 

potent engine, enabling AI systems to acquire and refine knowledge from data in an 

autonomous manner, independent of explicit programming  (Alpaydin 2021 ; Kufel et 

al. 2023). This paradigm shift empowers AI with the ability to learn from experience, 

akin to a dynamic and adaptable actor in a complex performance. ML boasts a diverse 

repertoire of techniques, each meticulously designed for specific roles. Supervised 

learning, akin to a seasoned mentor, guides algorithms by providing labelled data 

(paired inputs and desired outputs), enabling them to map future inputs to the 

corresponding outputs with accuracy (Russell & Norvig 2010). This empowers 

predictive feats across diverse domains, such as market trend forecasting or image 

categorization (James et al. 2021). Conversely, unsupervised learning, the intrepid 

explorer, thrives in the absence of labels, uncovering hidden patterns and relationships 

within data (Alloghani et al. 2020).  

However, the development of ML within AI is not without its significant 

challenges. Data biases, which can arise from stereotypical representations within 

training data, necessitate the adoption of responsible data sourcing practices and the 

implementation of bias mitigation techniques (Verma et al. 2021) The lack of 

explanation ability and interpretability in complex ML models raises concerns 

regarding accountability and potential misuse, highlighting the need for further research 

into model transparency techniques (Miller 2019). Furthermore, ethical considerations 

surrounding the societal implications of ML necessitate careful reflection and the 

development of robust ethical frameworks to guide responsible development and 

deployment (Floridi 2023). Despite these challenges, the future of ML within AI 

remains promising. Recent advancements, such as the Transformer architecture, have 

revolutionized natural language processing with breakthroughs in translation, 

summarization, and question answering tasks (Choi & Lee 2023).. Federated learning 
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addresses privacy concerns by enabling collaborative training on decentralized data, 

thereby enhancing model generalizability (Yu et al. 2023) Additionally, the 

development of Explainable AI (XAI) techniques is shedding light on the inner 

workings of complex models, fostering trust and transparency in AI systems (Arrieta et 

al. 2020). 

2.3 HISTORY OF MACHINE LEARNING 

The seeds of machine learning (ML) sprouted in the 1940s and 50s, nurtured by the 

burgeoning fields of cybernetics, control theory, and computational learning. Alan 

Turing's visionary 1950 paper, "Computing Machinery and Intelligence," and Frank 

Rosenblatt's groundbreaking creation of the Perceptron in 1958, the first artificial neural 

network, laid the groundwork for the explosive growth of ML research in the following 

decades (Rosenblatt 1962 ; Turing 2009). The 1960s and 1970s witnessed a golden age, 

with Arthur Samuel officially coining the term "machine learning" in 1959, the rise of 

powerful algorithms like decision trees and support vector machines, and even a 

temporary fascination with knowledge-based systems that relied on symbolic reasoning 

(Alpaydin 2020 ; Samuel 2000). While these early forays may not resemble the data-

driven giants of today's ML landscape, they offer a fascinating glimpse into the 

evolution of this transformative technology. 

The 1980s and 90s saw a decline in AI research funding and interest, often 

referred to as the "AI winter” (Toosi et al. 2021). However, this period also laid the 

groundwork for future breakthroughs. Theoretical advances like Vapnik-Chervonenkis 

theory (VC dimension) provided a rigorous framework for understanding generalization 

and model selection in ML (Liu 2023). Renewed interest in neural networks emerged, 

spurred by successes in backpropagation algorithms and advancements in 

computational power. The proliferation of data in the 21st century has fuelled an 

unprecedented renaissance in ML. Key drivers include the rise of deep learning,  deep 

neural networks with multiple hidden layers have achieved remarkable performance in 

diverse tasks, from image recognition to natural language processing (Alom et al. 2019) 

Availability of powerful computing resources is another factor affecting the uptake of 

ML. GPUs and specialized hardware have significantly accelerated training times for 
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complex models(Khan et al. 2022). Similarly, tools like TensorFlow and PyTorch have 

made ML accessible to a broader audience, fuelling innovation and collaboration 

(Mayer & Jacobsen 2020) Types of Machine Learning 

Machine learning (ML) has permeated diverse fields, prompting a need for a 

structured understanding of its various approaches. ML techniques can generally be 

grouped in to 3 main groups namely Supervised Learning, Unsupervised Learning, and 

Reinforced learning (Alsharif et al. 2020). 

2.4 SUPERVISED LEARNING 

The foundation of supervised learning lies in its labelled data, where each input 

observation is paired with its corresponding desired output. This allows algorithms to 

learn a mapping between inputs and outputs, enabling them to predict future outputs 

with remarkable accuracy. Supervised learning algorithms thrive on labelled training 

data, where each data point consists of features (inputs) paired with corresponding target 

values (labels). During training, the algorithm analyses this data, seeking patterns and 

relationships between features and labels. It essentially learns a mapping function that 

associates certain feature combinations with specific outputs. Once trained, the 

algorithm can leverage this mapping function for prediction. When given new input 

data, it analyses the features and identifies the output (label in classification, value in 

regression) most likely associated with those features based on the learned patterns 

(Tufail et al. 2023). 

The ultimate goal of a supervised learning model is to perform well on unseen 

data. Whether classifying data points into distinct categories or estimating continuous 

values, the model strives to accurately predict the appropriate label or output for any 

new input it encounters (Tufail et al. 2023). This prowess manifests in various tasks, 

including regression, where algorithms predict continuous values like market trends or 

housing prices (Hastie et al. 2009 ; James et al. 2021), and classification, where 

algorithms categorize data points into distinct classes, as seen in image recognition 

(Sarker 2021)  and sentiment analysis (Wankhade et al. 2022).  
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Recent advancements in supervised learning are pushing the boundaries of 

what's possible. Transformers, for instance, have revolutionized natural language 

processing with their groundbreaking performances in translation, summarization, and 

question answering (Patwardhan et al. 2023). Another noteworthy leap forward is 

Bayesian Deep Learning, which integrates probabilistic approaches with deep neural 

networks, enhancing the quantification of uncertainty and interpretability of complex 

models (Deodato 2019).  These advancements highlight the dynamic and ever-evolving 

nature of supervised learning, promising further breakthroughs in diverse domains 

(Burkart & Huber 2021). 

2.5 UNSUPERVISED LEARNING 

In contrast to its supervised counterpart, unsupervised learning operates in the realm of 

unlabelled data. This category seeks to unearth hidden patterns and relationships within 

data, akin to an explorer deciphering an unknown map. Common tasks within this realm 

include clustering where data points are grouped together based on shared 

characteristics, enabling tasks like customer segmentation for targeted marketing 

(James et al. 2021) . Dimensionality Reduction where complex data is simplified for 

efficient analysis, facilitating visualization of high-dimensional datasets, is another task 

under the unsupervised learning approach. (Usama et al. 2019). 

Recent advancements within unsupervised learning have brought forth the 

Generative Adversarial Networks (GANs). These models generate realistic data, 

enabling tasks like creating high-resolution images or synthetic speech(Dash et al. 

2023). Autoencoders are another recent development in unsupervised machine learning. 

This technique learns compressed representations of data, proving valuable for anomaly 

detection and data dimensionality reduction (Boquet et al. 2020).   

2.6 SEMI-SUPERVISED LEARNING 

Partially labelled data, where most labels are missing, poses a challenge for learning 

accurate models. Semi-supervised methods can leverage these few labelled examples to 

infer labels for the vast unlabelled data, enriching the training set. Similarly, classifying 

movie genres from synopses can benefit from utilizing labelled examples alongside 

Pus
at 

Sum
be

r 

FTSM



11 

unlabelled synopses to refine genre detection. While semi-supervised learning can boost 

performance compared to purely supervised methods with limited labelled data, it's 

important to acknowledge that the accuracy may not always surpass supervised learning 

with a full set of labels (Alpaydin 2021 ; Tufail et al. 2023). The effectiveness depends 

on data characteristics, chosen algorithms, and the specific task at hand. Nonetheless, 

for scenarios with scarce labelled data, semi-supervised learning offers a powerful way 

to unlock the potential of partially-labelled datasets (Tufail et al. 2023). 

There have been recent developments in the semi supervised machine learning 

approach. The graph-based methods where the inherent structure of data through graphs 

is exploited has led to powerful semi-supervised algorithms. Techniques like graph 

convolutional networks (GCNs) can effectively propagate label information across data 

points connected through edges, leading to improved performance on tasks like image 

segmentation and protein folding (Song et al. 2022).. Generative adversarial networks 

(GANs) and their variants are also increasingly being used to generate synthetic labelled 

data, augmenting the existing labelled dataset and enriching the training process. This 

can be particularly beneficial in scenarios with limited labelled data (Tu & Yang 2019). 

Active learning is another advancement in semi-supervised ML techniques. Choosing 

which unlabelled data points to label strategically can significantly improve the 

efficiency of semi-supervised learning. Recent advances in active learning algorithms 

focus on identifying the most informative and impactful data points for labelling, 

leading to better model performance with less manual effort (Flores & Verschae 2022). 

Uncertainty quantification that involves understanding the uncertainty associated with 

predictions from semi-supervised models is another crucial improvement as it facilitates 

building of trust and transparency. Recent research focuses on developing techniques 

to quantify uncertainty, allowing users to assess the confidence of the model's 

predictions {Zhao, 2020 #191.  

2.7 REINFORCED LEARNING 

Reinforcement learning embodies the self-taught student, continuously interacting with 

its environment to refine its behaviour. This category operates through trial and error, 

receiving rewards for desirable actions and penalties for undesirable ones, ultimately 
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maximizing its reward. Common tasks tackled by reinforcement learning include 

controlling of robots and automation,  enabling robots to learn optimal navigation and 

manipulation strategies (Mnih et al. 2015 ; Szepesvári 2022), and Game Playing, where 

complex games like Go and StarCraft 2 are mastered by employing an interactive 

approach (Moerland et al. 2023 ; Silver et al. 2016). 

Recent advancements within reinforcement learning include Deep Q-learning. 

This technique combines deep neural networks with reinforcement learning for 

improved performance and scalability (Kufel et al. 2023 ; Mnih et al. 2015). Multi-agent 

Reinforcement Learning is another recent development in reinforced learning. This 

framework enables multiple agents to learn and cooperate within complex environments 

(Lowe et al. 2017 ; Zhang et al. 2021). 

The frontiers of ML are constantly expanding, witnessing the emergence of new 

categories and hybrid approaches. Notably, Explainable AI (XAI) is gaining traction, 

aiming to demystify complex models and foster trust and transparency (Belle & 

Papantonis 2021). Additionally, Federated learning addresses privacy concerns by 

enabling model training on decentralized data, enhancing generalizability and security 

(Li et al. 2020) Natural Language Processing 

Natural Language Processing (NLP) is a rapidly evolving field within Artificial 

Intelligence (AI) focused on empowering computers to understand and manipulate 

human language in its diverse forms, including text and speech (Brown et al. 2020). 

This pursuit delves into the intricate workings of human language comprehension and 

usage, seeking to unlock the secrets of how we communicate effectively. By gleaning 

these insights, NLP researchers develop sophisticated tools and techniques that equip 

computers with the ability to handle natural language tasks like humans do. These tasks 

encompass a wide range, from sentiment analysis and text classification to speech 

recognition/synthesis and semantic analysis (Chowdhary & Chowdhary 2020). 

The foundation of NLP lies in a rich confluence of disciplines, drawing upon 

expertise from computer science, information science, linguistics, artificial intelligence, 

robotics, and even psychology. This interdisciplinary approach fosters a holistic 
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understanding of language, enabling the development of robust and adaptable NLP 

models. The impact of NLP is readily apparent in our daily lives, with applications 

permeating diverse sectors. Companies leverage NLP capabilities to automate services 

like machine translation, facilitating global communication and knowledge exchange 

(Chowdhary & Chowdhary 2020). Additionally, NLP powers tasks like parts-of-speech 

tagging and resume parsing, streamlining processes and enhancing data analysis 

(Baviskar et al. 2021).   

Looking beyond current applications, NLP holds immense potential for shaping 

the future of human-computer interaction. Advancements in conversational AI promise 

seamless and nuanced dialogue between humans and machines, blurring the lines 

between natural and artificial communication (Brown et al. 2020 ; Chowdhary & 

Chowdhary 2020). Moreover, NLP's influence is extending into fields like healthcare 

and education, offering innovative solutions for personalized medical diagnosis and 

interactive learning experiences. The future of NLP is brimming with exciting 

possibilities, driven by continuous research and advancements in areas like deep 

learning and neural networks. As NLP continues to evolve, we can expect even more 

profound breakthroughs that bridge the gap between machines and human 

communication, empowering us to interact with technology in a more natural and 

intuitive way. 

2.8 TEXT CLASSIFICATION 

Text classification, a cornerstone of NLP, revolves around automatically analysing 

textual data and assigning relevant categories based on its content. Also known as 

document classification, it leverages machine learning techniques to map predefined 

categories onto text documents (Rosquist 2021). This supervised learning approach 

finds applications in diverse areas such as spam filtering, search engine optimization, 

sentiment analysis, and product review mining (Anvar Shathik & Krishna Prasad 2020).  

Since the early 1990s, the combination of machine learning and natural language 

processing (NLP) has attracted a lot of interest in the understanding of linguistic 

structures (McShane & Nirenburg 2021). Text classification tasks, a subfield within 
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NLP, can be categorized based on their reliance on machine learning or not, as well as 

their labelling strategy. In multi-class classification, each data point belongs exclusively 

to one predefined category, while multi-label classification treats each label as a 

separate binary classification problem, allowing data points to belong to multiple 

categories or none (Brask & Gellerman 2021 ; Read et al. 2011). 

One early approach, popular in the 1980s, was the rule-based method. This 

involved crafting extensive sets of logical rules to classify texts based on keyword 

occurrences. For instance, a news article classifier might categorize texts containing 

"football," "team," or "score" as "sports." Notably, the Construe system developed by 

Hayes and Weinstein (1990) for Reuters news categorization exemplified this approach. 

While effective with well-crafted rules, this method suffers from limitations. As 

Sebastiani (2002) argues, rule-based systems require both a knowledge engineer and 

domain expert to build and maintain the rules, making them susceptible to changes in 

categorization needs. Recent research explored combining rule-based and probabilistic 

approaches using associative classification rules and a Naive Bayes classifier, achieving 

improved accuracy compared to standalone methods (Hadi et al. 2018). However, 

further comparisons with more advanced supervised techniques are needed. 

Another prevalent approach, topic modelling, utilizes unsupervised learning to 

discover latent topics within unlabelled document collections. By clustering documents 

based on word occurrences, topic modelling identifies thematic clusters, each defined 

by a set of keywords. One such widely used technique is Latent Dirichlet Allocation 

(LDA) developed by Blei et al. (2003). LDA finds applications in various areas, such 

as uncovering key themes in unlabelled research papers (Jelodar et al. 2019)   or 

analysing privacy policies (Sarne et al. 2019). While effective for latent topic discovery, 

topic modelling becomes less relevant when labelled data is readily available (Chauhan 

& Shah 2021). 

Finally, the supervised approach leverages labelled data and supervised learning 

algorithms to train classifiers for assigning one or more category labels to a document. 

Supervised text classification typically involves two steps: data preprocessing and 

feature vector extraction, followed by classifier training using the extracted features 
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(Flores & Verschae 2022). This approach offers a robust and flexible solution for 

various text classification tasks. 

2.9 TEXT PRE-PROCESSING 

Text pre-processing is a critical initial stage in numerous NLP algorithms, significantly 

impacting the downstream performance of classification models (Muaad et al. 2022). It 

acts as a preparatory phase, transforming raw textual data into a format suitable for 

machine learning algorithms. Social media or used generated data contains slangs or 

pictograms (emojis/emoticon) as a mean for graphical expression of emotions which 

are particularly useful in reviewing effectiveness of product or service (Li et al. 2019). 

Therefore, the multi-step text-preprocessing phase lays the foundation for tasks like text 

classification, topic modelling, sentiment analysis and text summarization, ultimately 

influences model accuracy. Omitting any of these steps can compromise the 

effectiveness of these tasks. 

The pre-processing pipeline typically involves a series of text cleansing 

operations, including: 

1. Tokenization: Splitting sentences into individual words or meaningful units 

(e.g., n-grams) (Haryadi et al. 2022). 

2. Stop-word removal: Eliminating common words that lack semantic content 

(e.g., articles, conjunctions) (Piter et al. 2021). 

3. Lowercase conversion: Standardizing all letters to lowercase for consistent 

representation (Hickman et al. 2022). 

4. Lemmatization: Reducing words to their base form (e.g., converting "running" 

to "run") (Hickman et al. 2022). 

These operations aim to remove noise from the text, such as unnecessary words 

and characters (punctuation, special symbols). This not only reduces the dimensionality 

of the data, making it more manageable for machine learning algorithms, but also 

facilitates effective feature selection (Kowsari et al. 2019) and ultimately enhances 

classification accuracy (HaCohen-Kerner et al. 2020)  
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2.10 CLASSIFICATION ALGORITHMS 

While there are many different ML algorithms, in this study, the focus was on 8 main 

models as follows. 

2.10.1 Multinomial Naive Bayes 

Multinomial Naive Bayes (MNB) is a powerful and effective tool for text classification. 

It excels in handling data represented as  counts or rates, making it ideal for tasks like 

sentiment analysis and, movie review classification (Mtetwa et al. 2018). MNB is based 

on multinomial distribution, which calculated the probability of observing counts 

among multiple categories. This characteristic makes it particularly suited for features 

like word counts or frequencies in text classification setup (Mtetwa et al. 2018 ; Rana 

& Kolhe 2015). 

MNB differs from its parent, Naive Bayes, in its handling of feature 

dependencies. While Naive Bayes assumes conditional independence between features, 

MNB treats them as independent despite potential underlying relationships facilitating 

efficient learning and prediction, especially for large datasets with bag-of-words 

features (Rahman & Akter 2019). However, MNB’s assumption of conditional 

independence has potential impact on model accuracy, particularly when semantic 

relationships between words are crucial. Delving deeper, MNB utilizes the multinomial 

distribution to estimate the likelihood of observing specific word counts in each class 

(Riego & Villarba 2023) This estimation assumes independence between words within 

documents and disregards their context or position. Additionally, MNB assumes equal 

prior probabilities for all classes, which can be adjusted based on prior knowledge or 

data characteristics (Gawich & Alfonse 2022). To avoid zero probabilities during 

calculations, MNB often employs Laplace smoothing, adding a small pseudo-count to 

each word occurrence across all classes (Gawich & Alfonse 2022) This technique 

ensures smooth probability estimations and avoids numerical instability. 

Recent MNB research aims to improve its performance by incorporating 

linguistic features like n-grams or TF-IDF to capture semantic relationships and 

improve accuracy (Sharifani et al. 2022). Additionally, research on semi-supervised 
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learning approaches utilizing both labelled and unlabelled data shows promising results 

in further enhancing MNB's effectiveness, particularly for large datasets with limited 

labelled examples (Abbas et al. 2019 ; Jiang et al. 2016). 

2.10.2 Logistic Regression 

Logistic regression is a widely used  text classification tool, achieving superior results 

in diverse applications and fields (Harsha Kadam & Paniskaki 2020). Its effectiveness 

is evident in studies like Kotzé et al. (2020), where it achieved an impressive 0.899 

accuracy in classifying violent events within WhatsApp messages, surpassing even 

SVM classifiers.  While linear regression thrives with continuous response variables, 

logistic regression shines in the realm of categorical outputs, where standard methods 

falter (Cheng & Hüllermeier 2009 ; Wu 2018). Its ability to transform the mean response 

and model probabilities via a sigmoid function makes it ideal for tasks like sentiment 

analysis, where reviews are categorized as "positive" or "negative" (Gupta 2020). 

logistic regression also offers optimization and adaptation, such as identifying 

informative data points for labelling, reducing labelling costs and improving 

generalization performance (Thangaraj & Sivakami 2018). Additionally, kernel 

methods can transform data into higher dimensions, addressing imbalanced rare events 

data (Hajibabaee et al. 2021). (Yen et al. 2011). For large datasets with high 

dimensionality, logistic regression demonstrates scalability through N-gram smoothing 

techniques (Kanish Shah et al. 2020)  

However, challenges exist in scenarios with numerous features and limited 

observations. Overfitting becomes a concern, as models memorize the training data 

instead of generalizing effectively (Zabor et al. 2022). Logistic regression exhibits an 

advantage over SVMs due to its ability to control model complexity through techniques 

like model selection (Occhipinti et al. 2022) Despite its popularity, ridge logistic 

regression faces limitations in large-scale settings, necessitating further exploration. 

Combining sparse solutions with ridge regression could address this issue by removing 

irrelevant features (Qin & Lou 2019). In the realm of natural language processing, 

logistic regression’s close relationship with neural networks further elevates its 

significance. Compared to Naive Bayes, a generative classifier, logistic regression 
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adopts a discriminative approach, providing advantages in interpretability and training 

simplicity (Solovyeva & Abdullah 2022). It performs well with linearly separable 

datasets but can lead to overfitting in certain scenarios, particularly with high number 

of features (Han 2020). This limitation confines its applicability to problems with 

discrete functions, as complex relationships are often beyond its reach. 

2.10.3 Linear Support Vector Classification  

Linear Support Vector Classification (Linear SVC) is a powerful algorithm for large-

scale, multi-class classification tasks. Derived from the classic Support Vector Machine 

(SVM) algorithm, it uses linearity to maximize class margins through hyperplanes. 

(Gawich, 2022 #138}. This simplification unlocks a multitude of advantages. Firstly, 

Linear SVC offers superior scalability compared to its kernel-based SVM counterpart, 

particularly for large datasets. Linear computations significantly speed up training and 

prediction times (Joshi & Abdelfattah 2021) while also enhancing interpretability by 

allowing easier understanding of decision boundaries and feature importance, providing 

valuable insights into model behavior. 

Beyond these core strengths, Linear SVC unlike standard SVMs offers 

flexibility allowing users to customize penalties like  "squared_hinge" to enhance 

convergence speed and improve robustness to outliers (Gawich & Alfonse 2022). 

Furthermore, the ability to customize penalties, such as L2 regularization, empowers 

tailoring the model for specific tasks and controlling model complexity, preventing 

overfitting (Scott Zhang et al. 2019). For multi-class scenarios, Linear SVC employs 

the efficient "one-vs-the-rest" approach, building separate binary classifiers for each 

class against all others (Géron 2022). This strategy makes it a versatile tool across 

diverse domains, from text classification and image recognition to bioinformatics and 

financial forecasting. 

However, its effectiveness depends on linear separability between classes. For 

complex non-linear relationships, kernel SVMs or other non-linear models might be 

more suitable. Additionally, interpretability can still be challenging with high-

dimensional data, but feature importance analysis techniques can provide insight 
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(Géron 2022). Despite these limitations, Linear SVC stands as a potent and flexible 

workhorse for large-scale, multi-class classification problems.  

2.10.4 Random Forest 

Random Forest (RF), a powerful ensemble method, in machine learning algorithms, that 

uses multiple decision trees, to overcome the limitations in individual trees. Unlike 

Bagging, Random Forest delves deeper. Both utilize multiple decision trees, but their 

approaches diverge when choosing split points within each tree. Bagging simply 

samples data with replacement and builds trees using the entire feature set, while 

Random Forest randomly selects a smaller subset of features for each split, injecting 

diversity into the tree-building process (Géron 2022 ; Joshi & Abdelfattah 2021). This 

diversification reduces overfitting, a notorious weakness of decision trees, and 

strengthens the overall ensemble. By averaging predictions from diverse trees, Random 

Forest achieves exceptional accuracy on various datasets, often exceeding other popular 

algorithms like Support Vector Machines (Brask & Gellerman 2021). The ensemble 

nature makes Random Forest inherently robust to noise and outliers in the data, further 

bolstering its performance (Mesa-Jiménez et al. 2022). Unlike "black-box" models, 

Random Forest offers valuable insights into feature importance, allowing data scientists 

to understand which features drive the model's predictions (Harsha Kadam & Paniskaki 

2020). 

Random Forest's versatility shines across numerous domains including 

sentiment analysis, spam filtering, classifying textual data based on its content (Gupta 

2020) and image categorization in healthcare and autonomous driving applications 

(Binkhonain 2021). Identifying anomalous patterns in financial transactions is crucial 

for fraud prevention, makes it a valuable tool in this domain (Tufail et al. 2023). 

However, ongoing research strives on addressing specific challenges associated with 

RF such as selecting optimal hyperparameters (Saad et al. 2021) understanding high-

dimensional data,(Parmar et al. 2023) and exploring alternative ensemble methods that 

leverage different principles like boosting. , These challenges require careful 

consideration and domain-specific knowledge, as well as novel techniques to 
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understand the model's decision-making process potentially leading to further 

performance improvements in specific tasks (Shawkat et al. 2022). 

2.10.5 Decision Tree 

Decision trees are widely used supervised learning algorithm in machine learning 

(Brask & Gellerman 2021 ; Safavian & Landgrebe 1991)that breaks down complex 

decision-making processes into simpler, rule-based steps. They use tree-like structure 

to classify data points by tracing a path from the root node down to a leaf, with each 

internal node representing a decision based on a specific feature. The feature with the 

highest information gain, , is chosen as the parent node, while subsequent features are 

assigned to child nodes until reaching the final leaf nodes containing the predicted class 

labels (Aghaei et al. 2019)  . Decision trees model offer several advantages, including 

training and prediction, , for large datasets (Brask & Gellerman 2021), a clear visual 

representation of decision rules used for classification, making them easier to 

understand and interpret compared to black-box models (Apallius de Vos 2023). As 

decision trees are robust to missing data and require minimal data preprocessing, it 

makes them a good choice for real-world applications (Apallius de Vos 2023). 

However, certain limitations need to be considered. Decision trees can easily 

overfit, meaning they memorize the training data but struggle to generalize to unseen 

examples (Apallius de Vos 2023 ; Gupta 2020). This can be mitigated through 

techniques like pruning or ensemble methods. Simple decision trees may not be able to 

capture complex relationships within the data, leading to suboptimal performance for 

intricate tasks (Apallius de Vos 2023). Decision trees can be sensitive to noise and 

outliers, potentially leading to inaccurate predictions (Feofanov 2021). Various 

architectures and splitting criteria exist, with its Gini impurity measure,  can be used to 

tailor the algorithm to specific problems (Feofanov 2021). Additionally, combining 

multiple decision trees through ensemble methods like boosting or bagging can 

significantly improve accuracy and reduce overfitting (González et al. 2020).  

Pus
at 

Sum
be

r 

FTSM



21 

2.10.6 Extra Tree 

Extra Tree Classifier (ETC) is a tree-based ensemble learning algorithm gaining traction 

for its effectiveness and simplicity (Barhoom et al. 2022). Similar to its cousin, Random 

Forest (RF), ETC combines multiple decision trees for improved accuracy and 

robustness. However, unlike RF, ETC boasts distinct characteristics that set it apart. 

One key difference lies in the training data used for each tree. While RF utilizes random 

bootstrapping, drawing samples with replacement from the original dataset, ETC 

employs the entire training set for each individual tree (Darbanian et al. 2020) (Geurts 

et al. 2006). This leads to a higher variance in the individual trees compared to RF, but 

also potentially reduces bias, contributing to better generalization (Bhati & Rai 2020). 

Another distinguishing feature of ETC is its approach to split point selection within the 

decision trees. Instead of relying on a specific optimality criterion like the Gini index 

used in RF (El Bouchefry & de Souza 2020), ETC randomly selects the best split point 

for each feature at each node (Darbanian et al. 2020)This element of randomness further 

contributes to the diversity of the trees and helps avoid overfitting (Binkhonain 2021). 

Despite these differences, ETC shares some key strengths with RF. Its ensemble 

nature makes it robust to noise and outliers in the data (Rustam et al. 2021). 

Furthermore, the individual trees are relatively simple and interpretable, allowing for 

easier understanding of the model's decision-making process (Bhati & Rai 2020). 

Additionally, feature importance can be derived from ETC forests, providing insights 

into the most influential features for the classification task (Saad et al. 2021). 

2.10.7 Extreme Gradient Boosting  

XGBoost, short for Extreme Gradient Boosting, has emerged as a dominant force in the 

machine learning landscape (Li et al. 2022). Built upon the foundation of gradient 

boosting, it combines multiple weak decision trees into a powerful ensemble, achieving 

unparalleled accuracy and efficiency. Its prowess extends to various domains, including 

medicine, finance, and even load forecasting. Several key features contribute to 

XGBoost's advantage over other models. It prevents overfitting through LASSO (Least 

Absolute Shrinkage and Selection Operator) and Ridge penalties, ensuring models 

generalize well to unseen data. Missing values are handled intelligently, and different 
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sparsity patterns are tackled efficiently. The algorithm eliminates the need for manual 

cross-validation, simplifying the hyperparameter tuning. Training is significantly 

accelerated by leveraging parallel processing, making XGBoost accessible even on 

modest hardware (Mesa-Jiménez et al. 2022). 

In the realm of medicine, XGBoost shines in diverse tasks like disease diagnosis, 

prognosis prediction, and treatment selection (Kufel et al. 2023). Its ability to handle 

both structured and unstructured medical data, such as clinical notes and images, makes 

it an invaluable tool for healthcare professionals (Inoue et al. 2020 ; Ramakrishnan & 

Ganapathy 2022 ; Wang et al. 2022). Under the hood, XGBoost iteratively builds 

decision trees, focusing on minimizing the loss function with each step (Occhipinti et 

al. 2022). Splitting criteria are based on CART principles, while the least square loss 

and logarithmic function are commonly used (Qi 2020). This continuous refinement 

leads to a progressively more accurate model. While sharing core principles with 

gradient boosting, XGBoost excels through its implementation details. Regularization 

techniques effectively control tree complexity, leading to improved performance (Piter 

et al. 2021). Hyperparameter tuning plays a crucial role in optimizing the learning 

process, and XGBoost offers ample flexibility in this regard (Piter et al. 2021). Its ability 

to handle real-world problems, both small and large-scale, with minimal resources is a 

testament to its elegance and efficiency (Afifah et al. 2021). 

2.10.8 K-Nearest Neighbours 

K-Nearest Neighbours (KNN) is a fundamental algorithm in machine learning known 

for its simplicity, versatility, and interpretability (Gasparetto et al. 2022). Its core 

principle is that similar data points reside in close proximity within a feature space. 

KNN meticulously searches the training set for the K nearest neighbours which are the 

data points that bear the closest resemblance to the newcomer. This kinship is quantified 

using distance metrics like Euclidean distance, which measures the "straight-line" 

separation between points. However, the choice of metric isn't a one-size-fits-all affair. 

Depending on the data's characteristics, Manhattan, Minkowski, or even Hamming 

distances might prove more suitable travel companions for KNN's exploration (Chen et 

al. 2020). Once the K nearest neighbours have been identified, KNN then determines 
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the fate of the newcomer by taking a majority vote to assign the most frequent class 

label among the neighbours to the new instance. This democratic approach leverages 

the inherent structure of the data, where similar points tend to cluster together, making 

it particularly effective for tasks like text classification, where KNN excels in handling 

feature-extracted text data like TF-IDF vectors (Brask & Gellerman 2021). KNN can 

also tackle regression tasks, where the goal is to predict continuous values. In this 

scenario, KNN consults its nearest neighbours once again, but instead of taking a 

majority vote, it averages their target variables to arrive at a predicted value for the new 

instance (Tufail et al. 2023). This makes KNN a versatile tool, capable of tackling 

diverse tasks across various domains. 

However, one hurdle in KNN lies in finding the optimal value for K, the number 

of neighbours considered. Choosing the right K is akin to striking a delicate balance – 

too few neighbours can lead to overfitting, while too many can result in underfitting. 

Balancing factors like data size, noise levels, and desired model complexity requires 

careful consideration (Rahman & Akter 2019). Another challenge KNN faces is its 

computational cost. As the number of data points in the training set grows, so does the 

computational burden of calculating distances to all of them during classification. This 

"curse of dimensionality" can make KNN less efficient for large datasets, prompting 

researchers to explore techniques like dimensionality reduction to mitigate this issue 

(Haryadi & Mandala 2019). However, KNN's strengths includes its ease of use, 

interpretability, and non-parametric nature, meaning it doesn't require strong 

assumptions about the underlying data distribution, making it a valuable tool for 

practitioners across various fields. From text classification and sentiment analysis to 

recommender systems and anomaly detection, KNN continues to be a relevant and 

powerful algorithm in the ever-evolving landscape of machine learning. 

2.11 FEATURE EXTRACTORS 

Analysing textual data for text classification requires transforming it into a format 

suitable for machine learning algorithms. This crucial step, known as feature extraction, 

involves identifying and representing the most informative words within the text. Two 

main approaches dominate this process: word embedding and term weighting. Methods 
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like Word2Vec capture the semantic relationships between words by assigning them N-

dimensional vectors. Words with similar meanings have closer vector representations 

in this "semantic space"(Pilehvar & Camacho-Collados 2020). This allows the model 

to learn and utilize complex relationships between words, improving its ability to 

understand the overall sentiment of a text. Techniques like TF-IDF assign weights to 

each word in a document, reflecting their importance in distinguishing that document 

from other Words that appear frequently within a document but rarely elsewhere are 

given higher weights, as they are more likely to be indicative of the document's specific 

content. The effectiveness of these weighting schemes is evaluated based on recall (the 

proportion of relevant terms extracted) and precision (the proportion of irrelevant terms 

excluded (Ahuja et al. 2019). 

It's important to distinguish between feature extraction and feature selection. 

While feature extraction transforms existing features into a reduced set, feature 

selection involves choosing a subset of these features that best represent the data for 

analysis (Tiruneh & Fayek 2019). This process helps to reduce redundancy and improve 

the efficiency of the machine learning model. The choice of feature extraction technique 

can also be guided by the type of vocabulary analysis desired. Closed vocabulary text 

mining relies on pre-defined dictionaries to identify relevant words within the text. This 

approach is particularly useful in organizational research, where specific constructs and 

themes are often well-defined (Hickman et al. 2022).  

Garg (2021)utilized two common text-to-vector methods for feature extraction, 

bag-of-words and TF-IDF. In addition to these automated techniques, this study also 

employed manual feature engineering. This involved extracting specific features from 

the review data that were deemed relevant for sentiment analysis but might not have 

been captured by the automated methods. These manually extracted features were then 

used to create a separate "manual feature" model (Garg 2021). It's important to 

remember that proper data preprocessing is essential before employing any feature 

extraction technique or building sentiment analysis models (Garg 2021).  
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2.11.1 Bag Of Words 

Despite rapid advancements in Natural Language Processing (NLP), the bag-of-words 

(BoW) model remains a cornerstone technique for text classification. Its enduring 

appeal stems from its simplicity, efficiency, and effectiveness, particularly for 

classifying short texts where word order plays a less crucial role (Juluru et al. 2021). At 

its core, BoW represents a document as an unordered collection of words, disregarding 

grammatical dependencies and word order. Each word acts as an independent feature, 

quantified by its frequency within the document or simply by its presence/absence 

(Abubakar et al. 2022) This straightforward approach makes BoW computationally 

efficient and readily implementable. BoW shines in its ability to effectively handle short 

texts where word order carries less semantic weight. This makes it well-suited for tasks 

like sentiment analysis of tweets or classifying short news articles(Lee et al. 2023).. 

However, BoW does face limitations. By discarding word order and grammar, it loses 

valuable semantic information inherent in the text's structure(Abubakar et al. 2022). 

Additionally, frequent words like "the" or "a" can add noise, potentially impacting 

classification accuracy (HaCohen-Kerner et al. 2020). Finally, the high dimensionality 

of the feature space can lead to sparsity issues, posing challenges for certain machine 

learning algorithms (Lee et al. 2023). To address these limitations, several strategies 

can be employed. Preprocessing steps like tokenization, stop word removal, and 

stemming/lemmatization can significantly improve BoW's performance (HaCohen-

Kerner et al. 2020)  

2.11.2 Term Frequency-Inverse Document Frequency  

The quest for accurate and efficient information retrieval remains a cornerstone of 

various computational linguistics tasks. Among the plethora of techniques deployed, 

Term Frequency-Inverse Document Frequency (TF-IDF) stands out as a versatile and 

robust approach for quantifying word relevance in documents. This review delves into 

the intricate workings of TF-IDF, exploring its theoretical underpinnings, applications, 

and challenges through the lens of relevant literature. Brask and Gellerman (2021) 

highlighted the inherent tension in text classification between recall (finding all relevant 

documents) and precision (retrieving only relevant documents). Salton and Buckley 

(1988) argued that term weighting schemes like TF-IDF play a crucial role in striking 
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this delicate balance. TF-IDF achieves this by considering both the frequency of a word 

within a document (TF) and its distribution across the entire corpus (IDF). Terms that 

appear frequently within a document are deemed more important for its content (Qi 

2020).   utilizes this principle in hotel review classification, where words like "clean" 

or "comfortable" carry higher weights as they are prevalent in positive reviews. 

However, a common word like "the" might appear frequently across many documents, 

diluting its significance for any specific content. This is where IDF comes in. IDF 

penalizes terms that occur in many documents, promoting specificity and discriminative 

power (Gupta 2020 ; Wu et al. 2008). 

The versatility of TF-IDF extends beyond the realm of text classification. 

Harsha Kadam and Paniskaki (2020) leverage it for multi-label email classification, 

while Haryadi et al. (2022) employed it to classify drug effectiveness based on patient 

reviews. It finds applications in sentiment analysis as well, with Parmar et al. (2023) 

employing it for drug quality classification based on review sentiment. Despite its 

numerous strengths, TF-IDF is not without its limitations. Computational 

considerations arise when dealing with large datasets, as calculating TF-IDF weights 

can be resource-intensive (Gupta 2020). Additionally, tuning the TF-IDF parameters 

for optimal performance requires careful calibration depending on the specific task and 

data characteristics (Brask & Gellerman 2021). Furthermore, handling stop words 

effectively is crucial, as their high frequency can skew the weightings and impact 

accuracy (Haque et al. 2023). 

2.12 CONFUSION MATRIX 

Confusion matrix is a tabular representation of a model's performance, visualizing 

correct and incorrect predictions for each class (Sami et al. 2021) 

The key elements in a confusion matrix are: 

1. True Positives (TP): Correctly predicted positives 

2. True Negatives (TN): Correctly predicted negatives 

3. False Positives (FP): Incorrectly predicted positives 

4. False Negatives (FN): Incorrectly predicted negatives (Zope et al. 2022) 
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2.13 PERFORMANCE METRICS 

Accuracy is the most intuitive metric, measuring the percentage of correctly predicted 

observations (Joshi & Abdelfattah 2021). However, it can be misleading for imbalanced 

datasets where one class dominates (Mtetwa et al. 2018). Considering the significant 

class imbalance, we chose not to rely on accuracy for model evaluation. 

�������� = (�� + ��) �����⁄ ������������ 

(Sami et al. 2021) 

Precision (also called positive predictive value) measures the proportion of true 

positives among predicted positives (Zope et al. 2022).It emphasizes how many of the 

predicted positives are actually correct. 

��������� = �� ∕ (�� + ��) 

(Zope et al. 2022) 

Recall (also called sensitivity) measures the proportion of true positives 

correctly identified among all actual positives (Sami et al. 2021). It focuses on how 

many of the actual positives were correctly captured. 

������ = �� ∕ (�� + ��) 

(Sami et al. 2021) 

F1-score is the harmonic mean of precision and recall, balancing both measures 

to provide a more robust evaluation of performance, especially with imbalanced data  

(Joshi & Abdelfattah 2021).It's often preferred in scenarios where both precision and 

recall are important, and where the cost of false positives and false negatives are 

different (Mtetwa et al. 2018). Therefore, for the purpose of this study, F1-score is the 

preferred performance metric to assess the performance of the machine learning models. 

�1 ����� = 2 × (��������� × ������) 

(Joshi & Abdelfattah 2021) 

Time – the computational speed of each algorithm is also measured in seconds 

to assess runtime efficiency of the models.  
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2.14 RELATED WORK 

Abbas et al. (2019) reported MNB achieved good performance for sentiment analysis, 

highlighting its efficiency for classifying short text with categorical features while Hadi 

et al. (2018) reported combining MNB with rule-based classification improved 

accuracy in some cases, suggesting potential for hybrid approaches. Meanwhile Kibriya 

et al. (2005) reported that MNB provided competitive performance compared to other 

algorithms, showcasing its effectiveness for general text classification. Generally, these 

past studies highlighted the MNB as an efficient and interpretable model that was robust 

to feature scaling and handles categorical features well. It also highlighted the 

challenges associated with MNB, such as its characteristic where it assumes 

independence of features (may not hold for complex data), is sensitive to priors, and is 

limited to categorical features. 

Joshi and Abdelfattah (2021) reported that the linear SVC outperformed other 

models for multi-class text classification of drug reviews, demonstrating its versatility 

and accuracy while Mesa-Jiménez et al. (2022) reported that XGB  proved robust to 

noise and outliers in building management system text data. Joshi and Abdelfattah 

(2021) compared six machine learning models for classifying online drug reviews by 

medical condition. Decision trees achieved an accuracy of 78.6%, lower than Linear 

Support Vector Machines (84.2%) but higher than Multinomial Naïve Bayes (75.3%). 

Mtetwa et al. (2018) studied the effects of feature extraction techniques in 

machine learning models for movie review classifications. Different combinations of 

text representation methods and machine learning classifiers were evaluated for their 

performance (Table 2.1). The study found that using tf-idf with a Support Vector 

Machine (SVM) and bigrams with a Multinomial Naive Bayes (MNB) classifier 

produced the best results, achieving a score of 0.88 besides also highlighting that the 

success of a good classifier depended on the feature extraction technique and the 

machine learning model (Mtetwa et al. 2018). Mtetwa et al. (2018) found RF achieved 

high accuracy for movie review classification, highlighting its effectiveness for 

sentiment analysis. RF generally was highly accurate, robust to noise and outliers, 

handles mixed data types, and provided feature importance insights but it can be 
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computationally expensive, less interpretable than MNB, and was prone to overfitting 

if not tuned properly. 

Anvekar (2020) investigated classification of online patient reviews based on 

effectiveness (drugs.com and WebMD.com dataset) using machine learning techniques 

such as RF, KNN, SVM (Support Vector Machine) and XGBoost classifier. The feature 

extraction techniques employed were Count Vectorizer (BOW) and TF-IDF with N-

gram approach (unigram and bigram). In this study (Anvekar 2020), XGBoost 

outperformed other models when paired with unigram model and tf-idf vectorization 

achieving an F1-score of 0.79. 

Kwon et al. (2018) used the Binary BOW, Count BOW and tf-idf feature vectors 

to compare the performance of classifiers in malware detection. In this study, DT, KNN, 

MLP, MNB and SVM were used as classifiers. Kwon et al. (2018) recognized both the 

Multilayer Perceptron (MLP) and K-Nearest Neighbours (KNN) algorithms as top 

classifiers for this dataset. Their consistent performance in terms of AUC score and 

accuracy stood out regardless of data imbalance and diverse feature extraction 

techniques (Binary BOW, Count BOW, and TF-IDF). 

Bolukbasi et al. (2016) reported that Linear SVC showed promise in reducing 

bias in word embeddings for sentiment analysis while Novakovic and Veljovic (2011) 

observed that it performed well for medical diagnosis classification, suggesting the 

potential of Linear SVC for binary tasks with structured data. A study by Solovyeva 

and Abdullah (2022) found that Linear SVC achieved good accuracy on various text 

classification tasks, showcasing its versatility. These studies found that Linear SVC was 

efficient for linear data, it was highly interpretable, and handled binary classification 

well. Its performance however can degrade with complex non-linear data, and it may 

require feature scaling, making it less flexible than Random Forest. 

Extreme Gradient Boosting (XGBoost) has emerged as a powerful and versatile 

algorithm for text classification tasks. Its effectiveness lies in its ability to handle 

complex relationships between features, leading to highly accurate and interpretable 

models. Qi (2020) employed XGBoost to classify theft crime data based on textual 
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descriptions. They achieved an accuracy of 93.8%, outperforming other algorithms like 

K-Nearest Neighbours, Naïve Bayes, and Support Vector Machines. This suggested 

XGBoost's capability in handling intricate textual patterns for crime classification. 

Meanwhile, Hendrawan et al. (2022) compared XGBoost with Naïve Bayes for 

sentiment classification of online product reviews. They found XGBoost to achieve 

superior accuracy (F1-score: 0.941) compared to Naïve Bayes (F1-score: 0.915) 

highlighting XGBoost's effectiveness in capturing sentiment nuances within textual 

data. Piter et al. (2021) utilized XGBoost for multi-label classification of scientific 

conference activity information text. They obtained an average hamming score of 

79.52% and an F1 score of 85.88%, demonstrating XGBoost's proficiency in handling 

multi-faceted textual data with diverse labels while Haumahu et al. (2021) implemented 

XGBoost for classifying fake news articles in Indonesian. They achieved an accuracy 

of 89% with a precision of 90% and recall of 80%. These findings collectively paint a 

promising picture of XGBoost's efficacy in text classification. XGBoost consistently 

delivered high accuracy across various text classification tasks, outperforming other 

algorithms in several cases. The algorithm adapted well to different text data types, 

including crime descriptions, product reviews, conference information, and news 

articles. XGBoost effectively handled tasks with multiple labels associated with each 

text data point, as demonstrated in the scientific conference activity classification. 

However, training XGBoost models can be computationally expensive compared to 

simpler algorithms like Naïve Bayes and XGBoost required careful hyperparameter 

tuning to achieve optimal performance, which can be challenging for non-experts. 

Past studies reported that while decision trees can be effective for text 

classification, their performance can be improved by using techniques like feature 

selection, pre-processing, and ensemble methods. Decision trees are often used as a 

baseline model for comparison with other algorithms due to their simplicity and 

interpretability. The accuracy of decision trees for text classification varied depending 

on the dataset and task. DT was able achieve competitive results, especially when 

combined with other methods. Rahman and Akter (2019) compared decision trees, K-

Nearest Neighbours, and Multinomial Naïve Bayes for topic classification on news 

articles. Decision trees achieved an accuracy of 88.4%, lower than Multinomial Naïve 

Bayes (91.8%) but higher than K-Nearest Neighbours (83.3%) while Thangaraj and 
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Sivakami (2018) discussed decision trees in the context of AI for text classification. 

They mention decision trees' popularity due to their simplicity and interpretability.  

A Covid-19 case study  by Almomany et al. (2022) proposed an optimized KNN 

classification algorithm using the DCT-KNN approach on the Intel FPGA platform. The 

study found that this approach significantly improves the execution time of KNN 

classification compared to traditional CPU-based implementations, achieving 44 times 

faster execution on the Intel De5a-net Arria-10 device. While Wen et al. (2022) 

proposed a weighted ML-KNN approach that used rough sets to identify and address 

the uncertainty in samples. This approach was found to be effective in multi-label 

classification tasks, achieving improvements in F1 score compared to several state-of-

the-art multi-label classification methods. Zhao et al. (2023) meanwhile explored the 

use of KNN in conjunction with prompt learning for biomedical document relation 

extraction. The study found that this approach can improve the learning of document 

semantic information and achieve improvements in relation F1 score compared to other 

methods. Huang et al. (2023) investigated the use of ML-KNN for multi-label 

classification of social media users. The study found that this approach can effectively 

capture the multi-faceted nature of social media users and outperform existing single-

label classification methods. Adhikary and Banerjee (2023) introduced a novel 

distributed KNN algorithm called Distributed Nearest Hash (DNH) that utilized hash 

maps and primary key clustering to achieve near-real-time scalability and fast prediction 

times. The study found that DNH can be 25% faster than state-of-the-art distributed 

KNN algorithms. 

Solovyeva and Abdullah (2022) explored various machine learning algorithms 

for text classification, including logistic regression. They found that logistic regression 

performs well on smaller datasets but can struggle with complex, non-linear data. The 

study by Hassan et al. (2022) compared the performance of different machine learning 

algorithms, including logistic regression, on two text classification tasks and found that 

logistic regression achieved competitive accuracy on both tasks, outperforming other 

models in some cases. Meanwhile, Mesa-Jiménez et al. (2022) investigated the use of 

machine learning for classifying sensor points in building management systems, 

comparing several algorithms, including logistic regression, and found that XGBoost 
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achieved the best performance. However, logistic regression still offered a viable option 

with good accuracy and efficiency. Overall, these studies suggest that logistic regression 

is a valuable tool for text classification, particularly for smaller datasets or when 

computational resources are limited. While it may not always be the most powerful 

algorithm, it offers a good balance of accuracy, efficiency, and interpretability. Logistic 

regression is often used as a baseline model for comparison with other, more complex 

algorithms. Its simplicity and interpretability make it a good choice for understanding 

the relationships between features and text categories. Logistic regression can be 

effective for tasks where the data is well-structured and the relationships between 

features and categories are linear. 

Saad et al. (2021) used Extra Trees as one of five machine learning models to 

classify sentiment in drug reviews, reporting that while Extra Trees performed well, it 

was not as well as the best-performing model, Logistic Regression with TF-IDF 

features. Umer et al. (2022) used Extra Trees as part of an ensemble model to classify 

sentiment in COVID-19 tweets and found that the ensemble model performed better 

than Extra Trees alone, and that Extra Trees with TF-IDF features achieved the best 

accuracy among the individual models used in the ensemble. Overall, these findings 

suggest that Extra Trees can be a good option for text classification, but it may not 

always be the best-performing model. It can be effective when used in conjunction with 

other models in an ensemble, and its performance can be improved by using TF-IDF 

features. Uçar et al. (2020) highlighted the critical role of the sampling method in 

determining the success of machine learning models, particularly during the training 

and testing phases. The study also mentioned that training size less than 50% is not 

favourable as it has negative implications on the results. A summary of related reviewed 

are as in Table 2.1 below. 

In this chapter, the various machines learning approaches and components were 

reviewed. Past studies that used the machine learning models and techniques employed 

in the current study were reviewed and discussed to give a background knowledge of 

machine learning models in drug review data. In the next chapter, the methodology 

employed for the classification of conditions for the drug review data are stated in a 

sequence of process. 
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Table 2.1 Summary of Related Work 

 

No Past Studies Task Dataset Method Findings / Conclusion Gaps 

1 Joshi and 
Abdelfattah 
(2021) 

Multi-class Text 
Classification Using 
Machine Learning 
Models for Online 
Drug Reviews 

Drugs.com & 
Druglib.com 

 MNB, DT, RF, ET, LR, 
Linear SVC  

 random split 80/20 
 TF-IDF 
 hyperparameter tuning 

(gridsearch, randomized 
search)  

 F1-score, time 

 F1-score Linear SVC - 
0.8825 (highest) 

 Time for Linear SVC and 
MNB was the shortest (less 
than a minute)  

 Others 51, 353,380,490 and 
1003 seconds (LR, RF, DT, 
ET) 

 Text preprocessing – 
beautiful soup 

 Only six machine 
machine learning 
algorithms 
considered 

 Effect of split was 
not considered 

 Effect of feature 
extractors was not 
considered 

2 Uddin et al. 
(2022)  

Drug Sentiment 
Analysis using 
Machine Learning 

drug review 
dataset  

 Binary classification 
(effective/not effective) 

 NB, RF, SVC, MLP 
 Multiclass classification – 

linear SVC (highly, 
considerable, moderately, 
marginally, ineffective) 

 Sampling method unknown 

 Accuracy % RF (94.06) MLP 
(86.82), SVC (88.63), NB 
(88.57)  

 Multiclass classification, 
linear SVC showed 
promising result 

 Unclear sampling 
methods and feature 
extraction methods 

 Only four ML 
methods considered  

to be continued… 
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…continuation 

3 Mtetwa et al. 
(2018) 

Feature Extraction 
and Classification of 
Movie Reviews 

 Stanford 
University’s 
ACL IMDB 
movie review 
dataset  

 Binary sentiment classification 
 SVM, MNB, RF  
 TF-IDF, Bigrams, counter 

vector (BOW), 
 Accuracy, F1-score, precision, 

recall 
 Sampling method was not 

stated 

 MNB + bigrams achieved 
highest F1-score 

 Effect of other 
machine learning 
algorithms were not 
experimented 

 Other splits were not 
considered 

 
 
 

4 Qi (2020) The Text 
Classification of 
Theft Crime Based on 
TF-IDF and XGBoost 
Model 

theft crime data  XGB, KNN, NB, SVM, 
GBDT  , multilabel 

 TF-IDF  
 accuracy, recall, F1-score 
 Sampling method – 80/20 split 

 XGBoost -best training 
model 

 F1-score -96.6% 
 lowest SVM -80.8% 

 Only five classifiers 
and one feature 
extractor considered 

5 Bangyal et al. 
(2021) 

Detection of Fake 
News Text 
Classification on 
COVID-19 Using 
Deep Learning 
Approaches 

COVID Fake 
News Datase 

 SVM, LR, NB, 
 Adaboost, K-NN, 
 DT, RF, MLP, 
 CNN, RNN, 
 LSTM, GRU  
 TF-IDF, 
 80/20 split 

 Bi-LSTM and CNN perform 
better than other classifiers 
(accuracy -97%, execution 
time, nonsensitive to outliers, 
reduction of noise)  

 ML models with highest 
accuracy 97% are (K-NN, 
MLP, RF). 

 Effect of other 
feature extractors 
were not considered 

 Effect of other 
sampling methods 
were not considered 

to be continued… 
 

 
 

Pus
at 

Sum
be

r 

FTSM



 

35 
 

…continuation 

6 (Garg 2021) Drug 
Recommendation 
System based on 
Sentiment Analysis of 
Drug Reviews using 
Machine Learning 

Drug Review 
Dataset from 
(Drugs.com) 

 LR, MNB, Stochastic 
Gradient descent, Linear SVC, 
Perceptron, Ridge Classifier 
experimented with TF-IDF 
and BOW 

 DT, RF, LGBM,CatBoost 
Classifier on word2vec 

 random split 75/25 
 SMOTE 
 precision, Recall, F1-score, 

accuracy 

 Linear SVC with TF-IDF 
outperforms all other 
classifiers -93% accuracy. 

 Effect of other 
sampling methods 
were not considered 

 N-gram feature 
extractor were not 
considered 

7 Ling (2023) Bio+ Clinical BERT, 
BERT Base, and 
CNN Performance 
Comparison for 
Predicting Drug-
Review Satisfaction.  

UCI ML Drug 
Review dataset  

 classifying patients’ drug 
review sentiment 

 Classifier: BERT, Bio-Clinical 
BERT, CNN, word2vec 

 Sampling method not 
mentioned 

 Parameter – Precision, Recall, 
F1-score 

 F1-score Bio + Clinical 
BERT is 0.81 

 Conventional 
classifiers were not 
considered 

 Only one feature 
extractor 
experimented 

8 Piter et al. 
(2021) 

multi-label 
classification of 
scientific conference 
activity information 
text 

scientific 
conference 
activities on the 
internet. 

 XGB 
 hyperparameter test analysis 
 TF-IDF, word2vec, 
 cross validation 
 precision, recall hamming 

score 
 Multi-label classification 

 F1 score of 85.88%, 
 demonstrating XGBoost's 

proficiency in handling 
multi-faceted textual data 
with diverse labels 

 Only one classifier 
was selected 

 Only 2 types of 
classifiers selected 

 Effect of random 
split sampling were 
not considered 

to be continued… 
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…continuation 
9 Parmar et al. 

(2023) 
Drug Quality 
Classification Using 
Sentiment Analysis of 
Drug Reviews 

Drug Review 
dataset from 
(Drugs.com) 

 NB, LR, perceptron, ridge 
classifier, DT, RF (only ML 
classsification method with 
quick prediction and training 
cycle were selected) 

 BOW, TF-IDF, 
Countvectorizer,  

 K-fold cross splits,  
 SMOTE 

 Selected ML: MNB, LR, 
DTC, RFC   

 Best F1-score- RF:  
 094(TF-IDF), 

0.93(countvectorizer)      
 worst F1-score: MNB: 
 0.79 (TF-IDF), 0.78 

(countvectorizer)                             

 Only four classifiers 
were selected 

 Effect of random 
split sampling 
method were not 
experimented 

10 Hendrawan et 
al. (2022) 
  

Comparison of Naïve 
Bayes Algorithm and 
XGBoost on Local 
Product Review Text 
Classification 

local product 
review 
 
  

 XGB, NB  
 word2vec, TF-IDF,  
 sampling 80/20 

 word2vec + XGBoost F1-
score 0.941,  

 TF-IDF +XGBoost (0.940). 
 NB+TF-IDF (0.9), 

NB+word2vec (0.9). 
 Xgboost classify unbalanced 

data better than NB 

 Only 2 classifiers and 
2 types of feature 
vectors considered 

 Other sampling 
methods were not 
experimened 

11 (Haumahu et al. 
2021) 
  

Classifying fake news 
articles in Indonesian 

indonesian news 
websites 

 XGB 
 TF-IDF 
 cross validation 
 precision, recall, F1-score, 

accuracy, 

 XGB-accuracy and F1-score 
92% 

 Only one classifier 
and one feature 
extractor were 
selected 

 No random sampling 
method studied 

 
to be continued… 
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…continuation 
12 Rahman and 

Akter (2019) 
Topic Classification 
from Text Using 
Decision Tree, K-NN 
and Multinomial 
Naïve Bayes 

Amazon's 
product review 
corpus  

 Decision trees, KNearest 
Neighbours, and Multinomial 
Naïve Bayes 

 75/25,  
 multiclass  
 tf-idf, count feature 

 F1-score (Tf-IDF): 
 DT - 0.79,  
 MNB - 0.918 
 KNN - 0.826 
 F1-Score (count-feature) 
 DT: 0.798 
 K-NN: 0.590 
 NB: 0.905 

 Only four classifiers 
studied 

 Only one sampling 
method was 
considered  

 Only 2 types of 
feature extractor 
considered 

13 Abbas et al. 
(2019) 

Multinomial Naive 
Bayes Classification 
Model for Sentiment 
Analysis 

dataset of movie 
reviews 

 MNB, TF-IDF   Accuracy - 90%   sampling methods 
are not stated 

 only one classifier 
and feature 
extraction used 

14 Mesa-Jiménez 
et al. (2022)  

Machine learning for 
text classification in 
building management 
systems 

Building 
Management 
Systems data 

 multi-class 
 LogReg, RF, XGB, MNB, 

Linear SVC 
 bag-of-words  

 XGBoost performs better 
than the other four except 
MNB which  shows  slightly  
worse  results.  

 sampling methods 
were not stated 

 only one feature 
technique used  

15 Novakovic and 
Veljovic (2011) 
 

C-Support Vector 
Classification: 
Selection of Kernel 
and Parameters in 
Medical Diagnosis 

Nine datasets 
from UCI 
repository 
database used to 
compare results 
of classification 
with C-SVC and 
different kernels 
and parameters 
in medical 
diagnosis.  

 Classifier - C-Support Vector 
Classifier              

 after optimization of 
parameters, resuts proved 
that classification accuracy is 
consistent for all kernels.  

 single class 
classification 

to be continued… 
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…continuation 
16 Solovyeva and 

Abdullah 
(2022) 

Comparison of 
Different Machine 
Learning Approaches 
to Text Classification 

comparative 
analysis of the 
main machine 
learning 
algorithms to 
classify texts 

 Comparative analysis of: 
 Word tokenization vs word 

embedding 
 NB, LR, Linear SVC, Deep 

Neural Networks 

 Naive Bayes algorithm 
performs even with limited 
training datasets  

 Logistic regression can 
classify unknown text 
instantly and perform well 
when the dataset is linearly 
separable. sets. However, the 
assumption of linearity 
between It has good accuracy 
for many textual data the 
dependent and independent 
variables is a limitation of 
the algorithm 

 Support vector machine is 
stable and efficient in spaces 
with high machine approach 
is not very effective for huge 
datasets.  

 Deep neural networks 
efficiently solve many 
problems like classification, 
regression, function 
approximation, clustering, 
and others and deal with 
different kinds of data. But 
they demand a significant 
load of data to achieve 
enhanced results than the 
previous methods. 

 Comparative analysis 
done only on 4 ML 
models 

 No comparative 
model on sampling 
methods 

 N-gram method was 
not analysed 

 No data on 
accuracy/F1-score 
for comparative 
analysis done 

to be continued… 
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…continuation 
 
17 Hassan et al. 

(2022) 
Analytics of machine 
learning-based 
algorithms for text 
classification 

 IMDB and 
SPAM dataset 

 comparative analysis of text 
classification  

 Support Vector Machine 
(SVM), k-Nearest Neighbour 
(k-NN), Logistic Regression 
(LR), Multinomial Naïve 
Bayes (MNB), and Random 
Forest (RF) 

 Tf-IDF, Bag-of-words 
 accuracy, precision, recall and 

f1- score.  

 k-NN model outperforms the 
other models in the Spam 
dataset with an accuracy of 
98.5%. 

 LR model surpasses the other 
models in the IMDB dataset 
with an accuracy of 85.8% 

 TextBlob tends to show 
better results for annotation 
drug reviews 

 Drug review dataset 
was not analysed 

 sampling method 
was not stated 

 
 

18 Saad et al. 
(2021) 

Determining the 
Efficiency of Drugs 
Under Special 
Conditions from 
Users’ Reviews on 
Healthcare Web 
Forums 

sentiment 
analysis on drug 
reviews 

 learning-based and lexicon-
based methods of sentiment 
analysis  

 three sentiment lexicons 
including AFFIN, TextBlob, 
and VADER. 

 three feature engineering 
approaches TF, TF-IDF, and 
TF U TF-IDF 

 logistic regression (LR), 
random forest (RF), extra tree 
classifier (ET), AdaBoost 
classifier (AB), and multilayer 
perceptron (MP)  

 hyperparameter setting done 
 accuracy, precision, recall and 

f1- score.  

 MLP and LR showed good 
performance when trained on 
TF-IDF and TF U TF-IDF 
with TextBlob sentiments 

 
 
 
 

 paper focuses on 
sentiment analysis of 
drug review dataset 

 only 5 ML models 
used 

 sampling method 
was not stated 

 
 
 

to be continued… 
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…continuation 
19 Umer et al. 

(2022)  

ETCNN: Extra Tree 
and Convolutional 
Neural Network-
based Ensemble 
Model for COVID-19 
Tweets Sentiment 
Classification 

 COVID-19 
tweet dataset 
from IEEE 
dataport 

Random Forest (RF), Extra Tree 
(ET), Gradient Boosting Machine 
(GBM), Logistic Regression (LR), 
Naive Bayes (NB), Stochastic 
Gradient (SG) and Voting 
Classifier (VC), ET-CNN 
(combines ET and CNN) 
TextBlob, VADER 
Tf-IDF, Word2vec 
hyperparameter setting done 

ET model shows the best 
performance among the machine 
learning models when TF-IDF 
features are used. 
  

sampling method was not 
stated 
no multiclass text 
classification 
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CHAPTER III  

 

 

METHODOLOGY 

3.1 INTRODUCTION 

The use of eight different machine learning models and four feature extraction 

techniques were employed to classify top ten common disease conditions for the drug 

review data. This study's research methodology are further explained following the 

steps as shown in Figure 3.1. 

 

Figure 3.1 Flowchart of drug review classification using machine learning models 

3.2 DRUG REVIEW DATASET 

The two drug review datasets namely Drugs.com (Surya Kallumadi 2018) and 

Druglib.com (Surya Kallumadi 2018) were obtained from UCI Machine Learning 

Repository. The dataset includes reviews of different medications for various medical 
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conditions, along with user ratings reflecting overall satisfaction and perceived 

effectiveness. The dataset was chosen as it contains information on side-effect profile 

and feedback on effectiveness of a drug which was like an adverse drug reaction report. 

This dataset has been used by other studies as reviewed in Table 2.1. The dataset 

comprised of 219,206 patient reviews were obtained from UCI Machine Learning 

Repository, with 215,063 sourced from Drugs.com and the remaining 4,143 reviews 

obtained from Druglib.com. The drug review data were obtained by crawling online 

pharmaceutical review sites. The raw sample data of both datasets (druglib.com and 

drugs.com) are shown in Figure 3.3 and 3.2. Both datasets contained the same 

conditions.  The list of attributes with its corresponding data type are shown in Tables 

3.1 and 3.2. 

Table 3.1 List of attributes with their types and descriptions for drug review 
(druglib.com) dataset  

Attributes name Type Attribute description 

Unnamed: 0 numerical Unique number assigned for each review 

urlDrugname categorical Name of drug 
Excluded from classification task 

condition categorical Name of condition 
Class attribute 

benefitsReview text Patient review on benefits 
Excluded from classification task 

sideEffectsReview text Patient review on side-effects 
Excluded from classification task 

commentsReview text Overall patient comment (includes benefit and side-effects) 

rating numerical 10-star patient rating (1-10) 
Excluded from classification task 

sideEffects categorical 5 step side effect rating 
(Mild side effects, no side effects, moderate side effects, 

severe side effects, extremely severe side effects) 
Excluded from classification task 

to be continued… 

…continuation 

effectiveness categorical 5 step effectiveness rating 
(Highly effective, considerably effective, moderately 

effective, ineffective, marginally effective) 
Excluded from classification task 
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Figure 3.2 Raw sample data for Druglib.com 

Table 3.2 List of attributes with their types and descriptions for drug 
review(drugs.com) dataset 

Attributes name Type Attribute description 
uniqueID string Unique ID for each review 

drugName categorical Name of drug 
Excluded from classification 

task 
condition categorical Name of condition 

Class attribute 
review text Patient review 

Excluded from classification 
task 

rating numerical 10-star patient rating (1-10) 
Excluded from classification 

task 
date date Date of review entry 

Excluded from classification 
task 

usefulCount numerical Number of users who found 
the review useful. 

Excluded from classification 
task 

 

Figure 3.3  Raw data sample for drugs.com 
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3.3 DATA CLEANING 

Data cleaning is the process of removing noise and inconsistency to improve the quality 

of data. In the following section, description on data cleaning for both datasets will be 

elaborated further. Figure 3.4 shows the information of attributes and number of entries 

for each dataset. From the figure, we can see some discrepancies in the numbers as 

highlighted in the image, therefore data cleaning was performed to enhance the data 

quality. 

The discrepancies in the data were as follows: 

1. Df_lib dataset has a range of 4143 entries, however the three attributes do not 

tally with this range and they are: 

a. condition with 4142 entries. 

b. sideEffectsReview with 4141 entries 

c. commentsReview with 4135 entries 

2. Df_com dataset has a range of 215063 entries, however one of the attributes, 

which is, ‘condition’ has 213869 entries. 

 

 

Figure 3.4 Count of entries for each attribute in drug.lib and drug.com datasets before 
data cleaning 
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3.3.1 Remove duplicates 

Both the dataset was checked for duplicate entries using the unique number assigned 

for each entry (Unnamed: 0 for druglib.com and uniqueID for drug.com). The output of 

results shows that there no duplicate values in either dataset. 

3.3.2 Remove null values 

The drug review dataset was inspected in python Colab tool to detect missing values 

and the result shows that there was missing values. Since the missing values comprises 

less than 0.5% (Figure 3.5) of the total data size, it was therefore removed from the data 

frame. 
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Figure 3.5 Output of results for missing values in drug.lib and drug.com datasets 

 

 

Figure 3.6 Count of entries for each attribute in drug.lib and drug.com datasets after 
data cleaning 

Based on the result output in Figure 3.6, there are no null entries (missing 

values) in the data frame after data cleaning. Each column has a “non-null count” equal 

to the total number of entries in the data frames. This indicates that all the values in each 

column are non-null, and there are no missing values in the dataset. The absence of null 

entries and duplicates means that the dataset is complete with values for each column, 

making it easier to work and analyse with. 

3.3.3 Remove attribute 

Given that the classification of conditions relies on reviews, additional columns from 

both datasets were excluded before merging them. Figure 3.7 shows the description of 

attributes selected in both datasets. 
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Figure 3.7 Output of results of 
both dataset after data cleaning 

Both these data sets (druglib.com and drug.com) were then combined for the 

purpose of this study and the description of the data frame is shown in Figure 3.8.  

 

Figure 3.8 Description of cleaned drug review dataset comprising of all medical 
conditions 

3.4 EXPLORATORY DATA ANALYSIS 

Exploring data is a crucial phase in comprehending and preparing data. This step is 

essential for gaining a complete understanding of the data's characteristics and for 

identifying any potential data quality issues. Since the classification on conditions are 
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based on reviews, the exploratory data analysis will be focused on attributes “condition” 

and “review”. 

Originally, the dataset encompasses reviews of 2720 distinct medical 

conditions. However, for the experiment, reviews associated with the ten most prevalent 

medical conditions were isolated to train and test the chosen models. The ten most 

common medical conditions include: 

1. Birth Control  

2. Depression  

3. Pain  

4. Anxiety  

5. Acne  

6. Bipolar disorder  

7. Insomnia  

8. Weight Loss  

9. Obesity  

10. ADHD 

Figure 3.9, shows the description of data frame of drug review dataset after 

cleaning and selection of top 10 medical conditions. The final data frame size of the 

drug review dataset is 98, 723. 
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Figure 3.9 Selected top 10 conditions and their corresponding counts. 

 

 

Figure 3.10 Distribution of conditions (classes) in the dataset 

The following section will describe the overall distribution of review length 

(number of characters in the review column) for the selected top 10 medical conditions 

(Figure 3.10). Figure 3.11 shows the statistics of review length, whereas Figures 3.12 

and 3.13 shows the distribution of the review lengths. The total count of reviews in the 

data frame is 98,723 which is the equal number of total number of entries in the data 

frame. The average length on the review is about 492.94 characters. The standard 

deviation is 231.68 which indicates that the review lengths are more spread out from 

the mean. It shows that the length of review is more dispersed, and there is greater 

variability in the dataset. The shortest review in the dataset is 3 whereas longest review 

is 5723. Most of the reviews (50%) fall between 308 and 717 characters. The outliers 

as shown in Figure 3.12 were not removed as the aim of the study is to experiment on 

the effects of different features. 
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Figure 3.11 Output of review length statistic in final data frame 

 

Figure 3.12 Distribution of review lengths shown in box plot chart 

 

 

 

 

 

 

 

Figure 3.13 Distribution of review lengths in data frame 
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3.5 TEXT PRE-PROCESSING 

In the text pre-processing stage, the unstructured data were converted to structured data. 

This is an important step as it involves the refinement of input data, which among others 

include activities such as eliminating unwanted punctuations, removal of stop words, 

lower casing of the data, removal of links and symbols, and returning the words to its 

roots by lemmatizing. This is important as data with unwanted links and symbols could 

block the analysis process and negatively affect the model's accuracy. This stage is 

crucial in order to maximise the output required from vectorization. In this study, 

Phyton’s “BeautifulSoup” library from the ‘bs4’ module and the ‘re’ regular expression 

library was employed to undertake the text pre-processing task. (Figure 3.14). 

The overall pre-processing stage was sub-divided into 4 separate sub-processes. 

In the first sub-processing stage (tokenization) whole sentences within the dataset were 

deconstructed into individual words. This was followed by the Stop word and 

punctuation removal sub-process where unimportant non-alphabetical characters were 

removed. The next sub-process is the lemmatization process where words with identical 

roots were identified. This step allowed words with different inflections and variations, 

but with similar roots to be identified and returned to the common base form. Finally, 

the individual words that have been cleaned and returned to its base form was 

reconstructed back into sentences in the detokenization pre-processing stage (Figure 

3.15). 
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Figure 3.14 Text preprocessing done to achieve a clean review data 
 

Figure 3.15 Output of review before and after text preprocessing 
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In order to give a better insight into the cleaned review, word cloud for each 

condition was generated. Word cloud is an excellent visualization tool to view the 

frequency of common word used in a review. The size of a word is directly 

proportionate to the number of times a word appears in a comment. Figures 3.16 -3.25 

gives an illustration of commonly used words for each condition or class by reviewers. 

Figure 3.16  Word cloud of birth control 

Figure 3.17  Word cloud of depression 
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Figure 3.18  Word cloud of pain 

Figure 3.19  Word cloud of anxiety 

 

Figure 3.20  Word cloud of acne 

 

Pus
at 

Sum
be

r 

FTSM



55 

 

 
 

 

Figure 3.21  Word cloud of bipolar disorder 

 

Figure 3.22  Word cloud of insomnia 
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Figure 3.23  Word cloud of weight loss 
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Figure 3.24  Word cloud of obesity 

Figure 3.25 Word cloud of ADHD 
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3.6 TRAIN/TEST SPLITS 

Different split techniques were employed in the machine learning model to determine 

any possible effects on the performance metrics. All machine learning models used for 

the classification task were subjected to five modes of train and test random splits which 

were: 

1. 90 /10 (train/test) split 

2. 80/20 (train/test) split 

3. 70/30 (train/test) split 

4. 60/40 (train/test) split 

5. 50/50 (train/test) split 

Figure 3.26 displays extracts of code for the train/test split applied in all the 

machine learning models within the Python Colab environment. The stratify function 

was utilized in all the codes as the data is imbalanced. Maintaining similar dataset 

proportions in the training and testing sets is made easier with the help of the stratify 

function. This feature helps create an impartial dataset and is especially helpful for 

handling class imbalances, as observed in the drug review dataset employed in this 

study. 

 

 

 

Figure 3.26  Excerpt from Colab for 90/10 (train/test) split model. 

3.7 FEATURE EXTRACTION 

Algorithms of machine learning cannot work directly with text. Text must be 

transformed into numerical values or more precisely vectors of numbers. This step is 

known as feature extraction which is important in reducing the complexity of text data 

which aids in the performance of machine learning models. There are few approaches 
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of feature extraction. Four different feature extraction techniques were used in this 

investigation for each model, and they are: 

1. BOW (Bag of words) 

2. TF-IDF unigram 

3. TF-IDF bigram 

4. TF-IDF trigram 

Bag of words is the simplest form of text representation. This method groups 

the features based on the occurrence of a word in the text disregarding the order of the 

word in a review. Thus, one potential issue with BOW is that it prioritizes words that 

appear frequently. As a result, words that appear frequently but are not very important 

could be given preference. In this experiment, BOW model was implemented 

using  CountVectorizer() function from the Sk-learn library in the Colab environment 

as shown in Figure 3.27. 

Figure 3.27 Excerpt from Google Colab on the use of count vectorizer to implement 
BOW as feature extraction 

Term frequency-Inverse Document Frequency (TF-IDF) is a feature extraction 

technique which is based on BOW. However, the TF-IDF method captures not only the 

occurrence but also the importance of a term in the review. A sample code of the 

employment tf-idf as feature is shown in Figure 3.28. 

Figure 3.28 Excerpt from Google Colab on the use of tf-idf vectorizer as feature 
extraction technique. 
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3.8 MACHINE LEARNING MODELS 

A total of eight machine learning models were selected for the classification task as 

listed below: 

1. Multinomial Naïve Bayes  

2. Linear Support Vector Classifier 

3. Linear Regression 

4. Random Forest 

5. Extra Trees 

6. Decision Tress 

7. Extreme Gradient Boost 

8. K-Nearest Neighbour 

3.9 PERFORMANCE METRICS 

To evaluate the performance of classifier models, performance metrics code were 

created using the sklearn.metrics in Colab environment. The medical conditions in the 

drug reviews dataset which is the class attribute is highly imbalanced, therefore the 

choice of accuracy to assess the performance of the models would be ineffective as it 

has the tendency to mark a review to the majority class leading to incorrect results. The 

reason is because accuracy is not a suitable metric to evaluate classifier if the dataset is 

imbalanced. Hence, F1-score which is a combination of precision and recall was chosen 

to evaluate the model performance as it punishes the extreme values more. Besides 

measuring the F1-score, total time taken to train and test the models were also recorded 

to assess duration of learning time by the classifiers. Nevertheless, for the purpose of 

record keeping, accuracy, precision and recall were also measured. 

3.10 PERFORMANCE EVALUATION 

Based on the highest F1-score and time duration to test and train the models, the best 

machine learning model for the classification was selected. 
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3.11 TOOLS USED  

Colab version 2.0 was used for this study, which is a Python development environment 

that runs in the browser via Google Cloud. Power BI. Table 3.3 shows the tools used in 

this study  

Table 3.3 Tools Used 

 

Tools Function 

Colab version 2.0 Data cleaning – removal of missing values, checking duplicates 

Exploratory data analysis – data visualization 

Statistics for text review 

Text preprocessing 

Feature extraction 

Perform classification task using machine learning models 

Obtain performance metrics for analysis of classifiers 
 

Excel workbook To record all the results that was produced by machine learning models 

 

 

Power BI 

 

Visualisation of all the results that was recorded in excel workbook 
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CHAPTER IV  

 

 

RESULTS 

4.1 INTRODUCTION 

In this section, the results of each model are presented in graph and table format. This 

section further explains the apparent effect of using different train/split method, feature 

extractors and the time taken to complete the codes by each machine learning models 

4.2 MULTINOMIAL NAÏVE BAYES 

 

 

 

 

 

 

 

Figure 4.1 F1-score and Total Time(s) by Feature Extractor and Algorithm for 
MNB. 
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Table 4.1 F1-score by algorithm and feature extractor for MNB 

  
 

   

Feature 
Algorithm 
(train/test 

ratio) 
F1-score Accuracy Precision Recall 

BOW 50/50 0.86 0.861 0.866 0.861 

60/40 0.862 0.862 0.866 0.862 

70/30 0.863 0.864 0.867 0.864 

80/20 0.865 0.866 0.868 0.866 

90/10 0.864 0.865 0.867 0.865 

unigram 50/50 0.709 0.731 0.792 0.731 

60/40 0.728 0.746 0.801 0.746 

70/30 0.741 0.758 0.807 0.758 

80/20 0.754 0.768 0.813 0.768 

90/10 0.763 0.776 0.818 0.776 

bigram 50/50 0.441 0.525 0.719 0.525 

60/40 0.468 0.546 0.73 0.546 

70/30 0.493 0.565 0.736 0.565 

80/20 0.519 0.585 0.741 0.585 

90/10 0.543 0.602 0.747 0.602 

trigram 50/50 0.387 0.487 0.722 0.487 

60/40 0.414 0.506 0.735 0.506 

70/30 0.44 0.524 0.735 0.524 

80/20 0.467 0.544 0.738 0.544 

90/10 0.489 0.561 0.744 0.561 

Table 4.2 Runtime (s) by algorithm and feature extractor for MNB 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 0.26 0.95 1.52 0.44 

60/40 0.21 0.48 0.88 0.31 

70/30 0.42 1.31 3.19 1.37 

80/20 0.42 1.31 3.19 1.37 

90/10 0.45 1.39 2.35 0.8 

Based on table 4.1, the highest F1-score for the model was recorded under the BOW 

feature extractor (0.87, 80/20 split) while the 90/10,70/30, 60/40, 50/50 splits of the 

same feature extractor had the second highest F1-score at 0.86.  The TF-IDF trigram 

with a 50/50 split showed the lowest F1-score at 0.39, followed by the TF-IDF trigram 

with a 60/40 split at 0.41. Subsequently, TF-IDF trigram (70/30 split) and TF-IDF 
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bigram (50/50 split) both recorded an F1-score of 0.44. The highest F1-score (0.87) was 

55% higher than the lowest F1-score (0.39). Among the feature extractors, BOW had 

the highest average F1-score (0.86) followed by TF-IDF unigram (0.74) and TF-IDF 

bigram (0.49). The lowest average of 0.44 was observed under TF-IDF trigram that was 

48% lower than the highest feature extractor (BOW), and 40.5% lower than the highest 

TF-IDF feature extractor (unigram).  

Train/test split did not have any noticeable effect on F1-score of BOW feature 

extractor.  It was noted that, apart from BOW, all TF-IDF feature extractors 

demonstrated an improvement in F1-score as the train/test split increased from 50/50 to 

a 90/10 split (Figure 4.1). The 50/50 split was consistently the lowest among all TF-

IDF feature extractors while the 90/10 split was observed to have the highest F1-score. 

The difference between maximum and minimum F1-score of the TF-IDF feature 

extractors were lowest in unigram (7%) followed by bigram (22.7%), with trigram 

having the highest difference of 25.6%. 

From Table 4.2, the top two quickest model runtimes, recorded by the feature 

extractor BOW, were 0.21 seconds (with a 60/40 split) and 0.26 seconds (with a 50/50 

split). Following closely, TF-IDF unigram achieved a runtime of 0.31 seconds for the 

60/40 split.  Meanwhile, TF-IDF trigram feature extractors exhibited the lengthiest 

runtimes for the models, with times of 3.19 seconds for 80/20 split, 2.35 seconds for 

90/10 split, and 1.53 seconds for 70/30 split being the bottom three. The fastest runtime 

(0.21s) was 93.4% higher than the slowest model (3.19s). Among the feature extractors, 

BOW had the fastest average runtime (0.40s) followed by TF-IDF unigram (0.65s) and 

TF-IDF bigram (0.98s). The slowest average runtime of 1.89s was observed under TF-

IDF trigram that was 88.8% lower than the fastest time (0.21s,) and 83.6% lower than 

the quickest TF-IDF feature extractor (unigram). The effect of split has no noticeable 

effect on the runtime, however 60/40 split consistently records lowest runtimes for all 

the feature extractors at 0.21s (BOW), 0.31s (TF-IDF unigram), 0.48s (TF-IDF bigram) 

and lastly 0.88s (TF-IDF trigram).  The difference in time for 60/40 split between the 

fastest time (0.31s) and slowest time (0.88s) is 64.7%.  
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Figure 4.2 Confusion Matrix for MNB 90/10 with bigram 

The confusion matrix (Figure 4.2) reveals the model's performance across 

different classes. Each cell represents the number of instances where the true class 

(rows) was predicted as the corresponding class (columns). The model excels at 

identifying “Birth Control,” achieving a perfect 100% accuracy. However, it struggles 

with “ADHD”, correctly classifying only 74 out of 451 instances. This could be due to 

potential limitations where model might assume features are independent, which might 

not be true for some classes.In addition, because the data is so severely unbalanced, the 

model with more examples than the others is better able to forecast the dominating class 

(birth control). 
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4.3 LOGISTIC REGRESSION 

Table 4.3  F1-score by algorithm and feature extractor for Logistic Regression 

Feature 
Algorithm 
(train/test 

ratio) 
F1-score Accuracy 

Precisio
n 

Recall 

BOW 50/50 0.89 0.887 0.887 0.887 

60/40 0.9 0.897 0.897 0.897 

70/30 0.89 0.887 0.887 0.887 

80/20 0.91 0.911 0.911 0.911 

90/10 0.92 0.918 0.918 0.918 

unigram 50/50 0.88 0.876 0.877 0.876 

60/40 0.88 0.879 0.88 0.879 

70/30 0.88 0.876 0.877 0.876 

80/20 0.88 0.884 0.884 0.884 

90/10 0.89 0.886 0.887 0.886 

bigram 50/50 0.89 0.886 0.889 0.886 

60/40 0.89 0.893 0.895 0.892 

70/30 0.89 0.886 0.889 0.886 

80/20 0.9 0.905 0.906 0.905 

90/10 0.91 0.91 0.911 0.91 

trigram 50/50 0.88 0.886 0.888 0.886 

60/40 0.89 0.894 0.896 0.894 

70/30 0.88 0.886 0.888 0.886 

80/20 0.91 0.908 0.91 0.908 

90/10 0.92 0.915 0.917 0.915 

 

Table 4.4 Runtime(s) by algorithm and feature extractor for Logistic Regression 

Algorithm  
(train/test ratio) 

BOW bigram trigram unigram 

50/50 36.38 154.59 373.61 21.13 

60/40 46.24 185.73 475.42 25.93 

70/30 62.73 277.46 706.82 34.70 

80/20 92.08 361.23 1044.42 49.00 

90/10 105.96 435.72 1105.45 54.22 
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Figure 4.3 F1-score and Total Time(s) by Feature Extractor and Algorithm for 
Logistic Regression 

Figure 4.3 shows the F1-score and Total Time(s) by Feature Extractor and Algorithm 

for Logistic Regression. LR model 90/10 split for BOW and TF-IDF (trigram) both 

yielded highest F1-score at 0.92 (Table 4.3). The second highest F1-score was at 0.91 

exhibited by BOW (80/20 split), TF-IDF bigram (90/10 split) and TF-IDF trigram 

(80/20 split). The third highest F1-score was at 0.90, shown by BOW (60/40 split) and 

TF-IDF bigram (80/20 split). The models which exhibited lowest F1-score at 0.88 were 

TF-IDF unigram (50/50, 60/40, 70/30, 80/20 splits) while the second lowest F1-score 

at 0.89 were BOW (50/50, 70/30 splits), TF-IDF unigram (90/10 split), TF-IDF bigram 

(50/50, 60/40, 70/30 splits) and TF-IDF trigram (60/40 splits). The highest F1-score 

(0.92) was 4.3% higher than the lowest F1-score (0.88). Except for TF-IDF unigram, 

the remaining feature extractors (BOW, TF-IDF bigram and trigram) had an average 

F1-score of 0.90 whereas lowest average F1-score 0.88 was displayed by TF-IDF 

unigram with a 2.2% difference. 

The top three quickest runtime was displayed by TF-IDF unigram feature 

extractor with times at 21.13s (50/50 split), 25.93s (60/40 split), and 34.70s (70/30 split) 

(Table 4.4). On the other hand, TF-IDF trigram logged the slowest time at 1105.45s 

(70/30 split), followed by 1044.22 for 80/20 split and 706.82s for 70/30 split. The fastest 

runtime (21.13s) was 98.08% higher than the slowest model (1105.45s). Within the 

groups of feature extractors, TF-IDF unigram recorded shortest average model runtime 

Pus
at 

Sum
be

r 

FTSM



68 

 

 
 

at 37.00s followed by BOW at 68.68s and TF-IDF bigram at 282.95s. The longest 

average runtime was at 741.14s displayed by TF-IDF trigram that was 95% lower than 

the quickest feature extractor (TF- IDF unigram). Interestingly, all the feature extractors 

showed increasing trend in runtime as the split increases from 50/50 to 90/10. 

The 50/50 split had consistently the shortest runtime among all the splits while 

the 90/10 split was observed to have the longest runtime. The difference between 

maximum and minimum runtime of the splits were lowest in TF-IDF unigram (61%) 

followed by TF-IDF bigram (64.5%), and BOW with 65.7%. TF-IDF had the highest 

difference with 66.2%. 

 

Figure 4.4 Confusion Matrix of LR with 90/10 split and bigram 

The confusion matrix (Figure 4.4) reveals the model's performance on different 

classes. While the model excels at identifying Birth Control with a near-perfect 

accuracy of 98.7%, it struggles with Obesity, only correctly classifying 77% (364 out 

of 476 instances) of cases. This lower accuracy compared to other classes might be due 

to class imbalance with significantly fewer examples of “Obesity” compared to “Birth 

Control”. This can bias the model towards the dominant class (Birth Control) due to the 

abundance of training data. Although, Logistic Regression, by its nature, excels at 
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handling linear relationships, it might struggle with classes requiring capturing non-

linear patterns or those with overlapping features. “Obesity” and similar classes (like 

weight loss) might have overlapping features, making it difficult for the model to 

distinguish them. 

4.4 LINEAR SUPPORT VECTOR MACHINE 

Table 4.5 F1-score by algorithm and feature extractor for Linear SVC 

Feature 
Algorithm (train/test 

ratio) 
F1-score Accuracy Precision Recall 

BOW 50/50 0.88 0.883 0.883 0.883 

60/40 0.9 0.895 0.895 0.895 

70/30 0.92 0.915 0.915 0.915 

80/20 0.92 0.915 0.915 0.915 

90/10 0.93 0.926 0.925 0.926 

unigram 50/50 0.89 0.889 0.889 0.889 

60/40 0.89 0.895 0.894 0.895 

70/30 0.91 0.905 0.905 0.905 

80/20 0.91 0.905 0.905 0.905 

90/10 0.91 0.91 0.909 0.91 

bigram 50/50 0.92 0.915 0.915 0.915 

60/40 0.93 0.926 0.926 0.926 

70/30 0.95 0.946 0.946 0.946 

80/20 0.95 0.946 0.946 0.946 

90/10 0.96 0.957 0.956 0.957 

trigram 50/50 0.92 0.916 0.916 0.916 

60/40 0.93 0.927 0.928 0.927 

70/30 0.95 0.947 0.947 0.947 

80/20 0.95 0.947 0.947 0.947 

90/10 0.96 0.957 0.957 0.957 

 

Table 4.6 Runtime(s) by algorithm and feature extractor for Linear SVC 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 37.33 7.61 15.71 3.27 

60/40 42.38 9.21 16.38 3.01 

70/30 68.16 12.31 22.54 5.43 

80/20 145.95 20.69 36.40 8.12 

90/10 127.89 14.30 26.96 5.85 
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Figure 4.5 F1-score and Total Time(s) by Feature Extractor and Linear SVC splits  

Linear SVC model 90/10 split for both TF-IDF (bigram and trigram) yielded the highest 

F1-score at 0.96 (Table 4.5). The second highest F1-score was at 0.95 exhibited by TF-

IDF trigram (80/20, 70/30/ split) and TF-IDF bigram (80/20, 70/30 split). The third 

highest F1-score was at 0.93, displayed by BOW (90/10 split) and TF-IDF bigram 

(80/20 split). BOW feature extractor of 50/50 split had the lowest F1-score (0.88), 

followed by TF-IDF unigram (50/50 and 60/40) at 0.89 and lastly BOW (60/40 split) 

model recorded third lowest F1-score at 0.90. The highest F1-score (0.96) was 8.3% 

higher than the lowest F1-score(0.88). 

In terms of average F1-score, TF-IDF bigram and trigram feature extraction 

methods achieved the highest performance, both scoring 0.94. This surpassed the 

performance of BOW at 0.91 and TF-IDF unigrams at 0.90. Within the feature 

extractor, the gap between the best and worst performing configurations was 4.3%, with 

an F1-score range from 0.90 to 0.94. Compared to the 4.3% spread within the feature 

extractors, the BOW approach, as the second-worst performer, only reached 3.2% 

below the top F1-score of 0.94 (TF-IDF bigram and trigram). 

Pus
at 

Sum
be

r 

FTSM



71 

 

 
 

The effect of split was seen on the F1-score as increment of train/test split model 

moved from 50/50 to 90/10 (Figure 4.5). The peak average F1-score was observed at 

0.94 (90/10 split) while the lowest average F1-score at 0.90 occurred with 50/50 split, 

indicating a 4.2% difference. The average score of 80/20 and 70/30 split was 0.93 

reflecting a decrease of 1.0% lower from the highest split which was 0.94 at 90/10 split. 

Likewise, 60/40 split produced an average F1-score of 0.91, indicating a 3.2% decrease 

compared to the highest split average (0.94). 

The TF-IDF unigram stands out for its remarkable speed, completing the 60/40 

split in a mere 3.01 seconds, making it the leader in terms of runtime efficiency (Table 

4.6). The second and third fastest runtime were also clocked-in by TF-IDF unigram at 

3.27s and 5.43s. BOW consistently produced slowest runtime across all the splits and 

the lowest three clock-in time were at 145.95s (80/20 split), 127.89s (90/10 split) and 

68.16s for 70/30 split.  Feature extractor BOW (80/20 split) was 49 times slower than 

the fastest TF-IDF unigram (3.01s). The average runtime of TF-IDF unigram is only 

5.14s making it the most time efficient feature extractor which is about 94% faster than 

the slowest feature extractor (BOW) with an average runtime at 84.34s. The TF-IDF 

bigram clocks at 12.82s average runtime making it the second fastest feature extractor 

with a difference of 60% from the fastest feature extractor (TF-IDF unigram). 

Meanwhile, TF-IDF trigram had an average runtime of 23.60s making it 78.2% slower 

than TF-IDF unigram (5.14s). 
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Figure 4.6 Confusion matrix of linear SVC with F1-score and total time at 90/10 split 
with tf-idf bigram 

Figure 4.6 shows the confusion matrix of linear SVC.  Overall, the model’s 

performs well across most classes. Birth Control stands out with the highest F1-score 

of 0.99, indicating exceptional classification accuracy. However, the model struggles 

slightly with Obesity (F1-score 0.88) and Weight Loss (F1-score 0.89). This could be 

due to data overlap where Obesity and Weight Loss might have features that overlap 

with other health conditions. These classes might rely on more subjective features 

compared to Birth Control. Birth Control data might have clearer, distinct features 

compared to others, allowing the model to draw a sharper decision boundary between 

positive and negative cases. 
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4.5 RANDOM FOREST  

Table 4.7 F1-score by algorithm and feature extractor for Random Forest 

Feature 
Algorithm (train/test 

ratio) 
F1-score Accuracy Precision Recall 

BOW 50/50 0.89 0.892 0.893 0.892 

60/40 0.9 0.905 0.906 0.905 

70/30 0.92 0.921 0.921 0.921 

80/20 0.93 0.935 0.935 0.935 

90/10 0.94 0.944 0.944 0.944 

unigram 50/50 0.89 0.892 0.892 0.892 

60/40 0.91 0.908 0.908 0.908 

70/30 0.92 0.919 0.92 0.919 

80/20 0.93 0.935 0.935 0.935 

90/10 0.94 0.945 0.945 0.945 

bigram 50/50 0.88 0.878 0.88 0.878 

60/40 0.89 0.895 0.897 0.895 

70/30 0.91 0.912 0.913 0.912 

80/20 0.92 0.925 0.926 0.925 

90/10 0.94 0.94 0.941 0.94 

trigram 50/50 0.87 0.873 0.875 0.873 

60/40 0.89 0.89 0.892 0.89 

70/30 0.91 0.906 0.908 0.906 

80/20 0.92 0.923 0.924 0.923 

90/10 0.94 0.936 0.936 0.936 

 

Table 4.8 Runtime(s) by algorithm and feature extractor for Random Forest 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 153.11 1477.87 3537.47 142.29 

60/40 208.40 1815.99 4307.28 200.17 

70/30 265.17 2295.58 5855.48 240.53 

80/20 352.89 3226.64 7981.62 319.98 

90/10 406.43 3322.03 10005.65 357.77 
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Figure 4.7 F1-score and Total Time(s) by Feature Extractor and Random Forest splits 

Based on Table 4.7, Random Forest combined with BOW and TF-IDF (unigram, 

bigram, trigram) achieved the highest F1-score of 0.94 using a 90/10 data split. This 

was followed by 80/20 split for BOW and TF-IDF unigram producing F1-score of 0.93. 

Subsequently, TF-IDF bigram and trigram with 80/20 split, and BOW and TF-IDF 

unigram with 70/30 split, shared the third highest F1-score of 0.92. Compared to other 

configurations, TF-IDF trigram and bigram with a 50/50 split underperformed and took 

the bottom with an F1-score of 0.87 and 0.88 respectively. Following closely at third 

lowest F1-score of 0.89 were models with 50/50 split (BOW and TF-IDF unigram) and 

60/40 split (BOW and TF-IDF trigram). The top performer achieved an F1-score of 

0.94, a 7.4% improvement over the weakest performing configuration (0.87). Among 

the feature extraction techniques, BOW and TF-IDF unigram achieved the highest 

average F1-score of 0.92. This outperformed TF-IDF trigram, which scored 0.90 (the 

lowest) and TF-IDF bigram at 0.91 F1-score. There was only a 2.1% difference between 

the best and worst performing feature extractor. Increasing the training data size 

demonstrably boosted model performance, with the average F1-score climbing from 

0.88 (50/50 split) to 0.94 (90/10 split). This translates to a 6.4% improvement. 

Compared to the optimal 90/10 split, the 80/20 yielded slightly lower average F1-score 

of 0.93, reflecting a 1.0% decrease while the 70/30 split achieved an average F1-score 

of 0.91 with 3.2% decrease. Similarly, the 60/40 split suffered a 4.2% dip in 

performance with F1-score of 0.90. 
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Table 4.8 shows that TF-IDF unigram achieved the fastest time in completing 

the train and test for 50/50 split model with a runtime of 142s. The second shortest 

runtimes were recorded by BOW (50/50 split) at 153s while the third was recorded by 

TF-IDF (60/40 split) at 200s. TF-IDF trigram produced longest two runtimes at 4307s 

with 60/40 split ratio and 3537s with 50/50 split ration. The third longest runtime was 

at 3322s produced by TF-IDF bigram with 90/10 split ratio.   

The feature extractor with the lengthiest runtime (4307s), identified as TF-IDF 

trigram (60/40), was 30 times slower than the fastest feature extractor, namely TF-IDF 

unigram with a 50/50 split (142s). The feature extraction technique with the fastest 

average speed was TF-IDF unigram at 250s which is about 25 times faster than the 

slowest technique TF-IDF trigram at an average runtime of 6330s. The BOW  clocks at 

280s average runtime making it the second fastest feature extractor with a difference of 

10.7% from the shortest average runtime (250s). Meanwhile, TF-IDF bigram had an 

average runtime of 2420s making it 89.7% slower than TF-IDF unigram. Every 10% 

increase in training data translated to a notable rise in the processing time (Figure 4.4). 

The longest average runtime was observed at 3520s (90/10 split) while the shortest 

average runtime was by 50/50 split with 1330s giving a 62.2% of time reduction. While 

more training data generally led to slower training, the performance varied across 

specific splits. The 60/40 split found a middle ground at 1630 seconds, while the 70/30 

and 80/20 splits clocked in at 2160 seconds and 2970 seconds respectively. Pus
at 
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Figure 4.8 Confusion matrix for Random Forest at 90/10 split with bag-of-words 

Based on Figure 4.8, the model could identify classes such as birth- control (F1-

score : 0.98) and acne (F1-score : 0.97) efficiently. This could be due to clear separation 

and balanced data in these classes.  However, the model struggles to classify classes 

such as obesity and weight -loss. Random Forests are powerful for complex data 

patterns, but they might be less efficient than simpler models (like Linear SVC) for 

well-separated classes.  
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4.6 DECISION TREE 

Table 4.9 F1-score by algorithm and feature extractor for Decision Tree 

Feature 
Algorithm (train/test 

ratio) 
F1-score 

Accurac
y 

Precisio
n 

Recall 

BOW 50/50 0.835 0.836 0.835 0.836 

60/40 0.859 0.86 0.859 0.86 

70/30 0.88 0.88 0.879 0.88 

80/20 0.901 0.901 0.901 0.901 

90/10 0.924 0.925 0.924 0.925 

unigram 50/50 0.831 0.832 0.831 0.832 

60/40 0.857 0.857 0.856 0.857 

70/30 0.876 0.877 0.876 0.877 

80/20 0.901 0.901 0.901 0.901 

90/10 0.921 0.922 0.921 0.922 

bigram 50/50 0.832 0.833 0.832 0.833 

60/40 0.855 0.856 0.855 0.856 

70/30 0.876 0.877 0.875 0.877 

80/20 0.898 0.899 0.898 0.899 

90/10 0.921 0.921 0.921 0.921 

trigram 50/50 0.822 0.823 0.822 0.823 

60/40 0.847 0.847 0.847 0.847 

70/30 0.872 0.872 0.872 0.872 

80/20 0.895 0.895 0.895 0.895 

90/10 0.917 0.918 0.917 0.918 

 

Table 4.10 Runtime (s) by algorithm and feature extractor for Decision Tree 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 30.82 197.7 659.2 41.15 

60/40 36.14 189.55 617.54 46.98 

70/30 49.23 289.41 1033.31 56.53 

80/20 58.89 405.4 1128.49 97.62 

90/10 71.68 378.41 1207.86 79.47 
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Figure 4.9 F1-score and Total Time(s) by Feature Extractor and DT splits 

A combination of Bag-of-Words (BOW) and TF-IDF features (unigrams, bigrams, and 

trigrams) fed into a Decision Tree classifier yielded a top F1-score of 0.92 on a 90/10 

training-testing split (Table 4.9). Following closely, the 80/20 split for BOW and TF-

IDF (unigram, bigram, trigram) yielded an F1-score of 0.90. In the third position, TF-

IDF (unigram and bigram) and BOW with a 70/30 split shared an F1-score of 0.88. In 

contrast, all 50/50 split configurations performed less optimally, securing the bottom 

three positions with F1-scores of 0.82 (TF-IDF trigram), 0.83 (TF-IDF unigram and 

bigram), and finally, 0.84 (BOW). The top-performing configuration achieved an F1-

score of 0.92, marking a 10.9% improvement over the weakest performing 

configuration (0.82). The average F1-score within the feature extractors did not differ 

much as BOW and TF-IDF (unigram and bigram) achieved a score of 0.88 while TF-

IDF trigram had 0.87 F1-score with a mere difference of 1.1%. Notably, augmenting 

the size of the training data substantially enhanced model performance, evidenced by 

the average F1-score escalating from 0.83 (50/50 split) to 0.92 (90/10 split), indicating 

a notable 9.7% improvement (Figure 4.5). In comparison to the optimal 90/10 split, the 

80/20 split resulted in a slightly lower average F1-score of 0.92, indicating a 2.1% 

decrease. The 70/30 split achieved an average F1-score of 0.88, reflecting a 4.3% 
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decrease. Similarly, the 60/40 split experienced a 7.6% decline in performance, yielding 

an F1-score of 0.85. BOW with 50/50 split model demonstrated the fastest completion 

time for both the training and testing phases, achieving a runtime of 30.82s. The second 

shortest runtimes were observed with BOW in the 60/40 split model at 36.14s, followed 

by TF-IDF in the 50/50 split model at 41.15s. TF-IDF trigram recorded the longest 

runtimes, with 1208s for the 90/10 split ratio and 1128s for the 80/20 split ratio. The 

third longest runtime, at 1033s, was produced by TF-IDF bigram with a 70/30 split ratio. 

The model with the lengthiest runtime (1208s), identified as TF-IDF trigram 

(90/10), was 39 times slower than the fastest model, specifically TF-IDF unigram with 

a 50/50 split (31s) (Table 4.10). The feature extraction technique with the fastest 

average speed was BOW unigram at 49s, approximately 18 times faster than the slowest 

technique, TF-IDF trigram, with an average runtime of 929s. Tf-IDF unigram had an 

average runtime of 64s, making it the second fastest feature extractor with a difference 

of 23% from the shortest average runtime 49s). Meanwhile, TF-IDF bigram had an 

average runtime of 292s, making it 83% slower than BOW (49s). The influence of the 

data split was visible in the average runtime, with test proportions ranging from 0.1 to 

0.3, the models exhibited an increase in processing time. The split 90/10 had the longest 

average runtime (434 seconds), followed by 80/20 (423 seconds) and 70/30 (357 

seconds). Based on Figure 4.5, the effect is not visible in splits 50/50 and 60/40 since 

the average runtime was shorter in test proportion 0.5 (232s) compared to 0.6 (223s). 

The average runtime difference between the two the quickest (60/40) and 

slowest(90/10) split ratios was 49%. 
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Figure 4.10  Confusion Matrix of Decision Tree with 90/10 split using bigram 

The confusion matrix of DT (Figure 4.10) indicated that the model's 

performance varies across classes, excelling at identifying clear-cut conditions like 

"Birth Control" and "Acne" but struggling with more nuanced ones like "Anxiety" and 

"Obesity." This suggests the underlying data characteristics play a significant role in 

F1-score variations. Decision trees, like the one used here, create simpler decision 

boundaries compared to models like Random Forests. If a class like "Anxiety" involves 

complex, non-linear relationships between features, the decision tree might struggle to 

capture these nuances, leading to misclassifications and lower F1-scores. Decision trees 

are susceptible to overfitting, especially if not properly regularized. This occurs when 

the model becomes too focused on memorizing the training data instead of learning 

generalizable patterns. Overfitting can lead to high accuracy on the training data but 

poor performance on unseen data, potentially impacting the F1-score for specific 

classes. 
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4.7 EXTRA TREE 

Table 4.11  F1-score by algorithm and feature extractor for Extra Tree 

Feature 
Algorithm (train/test 

ratio) 
F1-score Accuracy Precision Recall 

BOW 50/50 0.89 0.894 0.895 0.894 

60/40 0.91 0.908 0.908 0.908 

70/30 0.92 0.921 0.921 0.921 

80/20 0.93 0.935 0.935 0.935 

90/10 0.95 0.949 0.949 0.949 

unigram 50/50 0.9 0.897 0.898 0.897 

60/40 0.91 0.912 0.912 0.912 

70/30 0.92 0.923 0.923 0.923 

80/20 0.94 0.938 0.938 0.938 

90/10 0.95 0.948 0.948 0.948 

bigram 50/50 0.89 0.888 0.89 0.888 

60/40 0.9 0.902 0.903 0.902 

70/30 0.91 0.915 0.915 0.915 

80/20 0.93 0.93 0.93 0.93 

90/10 0.94 0.943 0.943 0.943 

trigram 50/50 0.88 0.883 0.884 0.883 

60/40 0.9 0.898 0.899 0.898 

70/30 0.91 0.913 0.913 0.913 

80/20 0.93 0.928 0.928 0.928 

90/10 0.94 0.94 0.941 0.94 

Table 4.12  Runtime (s) by algorithm and feature extractor for Extra Tree 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 204.63 1645.89 4122.8 189.68 

60/40 272.97 2565.94 6792.91 262.57 

70/30 317.19 2965.8 7037.61 327.06 

80/20 380.63 3346.05 7642.77 379.6 

90/10 450.76 4080.03 10515.35 432.59 
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Figure 4.11  F1-score and Total Time(s) by Feature Extractor and ET splits 

The greatest F1-score, as shown in Table 4.11, is 0.95. The BOW and TF-IDF unigram 

feature extractor using the 90/10 method were used to accomplish this.  Closely behind, 

an F1-score of 0.94 was obtained from the 90/10 split for TF-IDF (unigram, bigram, 

trigram). With an 80/20 split, TF-IDF (bigram and trigram) and BOW shared the third 

highest F1-score of 0.93. All 50/50 split configurations, on the other hand, did not 

perform as well as they could have, earning the lowest three F1-scores (TF-IDF trigram: 

0.88), (TF-IDF bigram and BOW: 0.89), and (TF-IDF unigram: 0.90). TF-IDF bigram 

and trigram for 60/40 and Tf-IDF unigram for 50/50 split also displayed the third lowest 

F1-score of 0.90. With a F1-score of 0.95, the best configuration outperformed the 

worst, improving on it by 7.4% (F1-score = 0.88).  Comparing the feature extraction 

methods, TF-IDF bigram and trigram had lower average F1-score (0.91), compared to 

TF-IDF unigram and BOW at 0.92. Separating the top and bottom performing feature 

extractors at just 1%.  

From Figure 4.6, expanding the training data set improved the model's 

performance, as seen by the average F1-score rising from 0.89 (50/50 split) to 0.94 

(90/10 split), a rise of 5.3%. Compared to the ideal 90/10 split, the 80/20 split produced 

an average F1-score of 0.93, which is 1.0% less than the optimal split. An average F1-
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score of 0.92 was obtained by the 70/30 split, indicating a 2% decline. Likewise, the 

60/40 split saw a 5% drop in performance, resulting in an F1-score of 0.89. 

Based on Table 4.12 and Figure 4.6, the model with fastest runtime was the TF-

IDF unigram with 50/50 split which showed completion time at 190s. In the 50/50 split 

model, BOW had the second-shortest runtimes at 204s, while in the 60/40 split model, 

TF-IDF unigram had the third shortest runtimes at 262.57s. With 10515s for the 90/10 

split ratio and 7642s for the 80/20 split ratio, the TF-IDF trigram had the longest 

runtimes. The TF-IDF bigram with a 70/30 split ratio generated the third longest 

runtime, measuring 7037s. TF-IDF trigram (90/10), the feature extractor with the 

longest duration (10515s), was 55 times slower than TF-IDF unigram with a 50/50 split 

(190s), which was the fastest feature extractor.  

With an average duration of 7220s, TF-IDF trigram was the slowest feature 

extraction technique, running around 23 times slower than the fastest, TF-IDF unigram, 

with an average speed of 320s. With a 3% difference from the shortest average runtime 

(320s), BOW's average runtime of 330s positioned it as the second quickest feature 

extractor. With an average runtime of 2920s, TF-IDF bigram was 89% slower than the 

fastest average runtime of 320s for TF-IDF unigram. Runtime analysis revealed that the 

split data had an effect, with average processing time trending upwards with every 10% 

increase in training data. While the 50/50 split had the least average runtime at 1540s, 

indicating a 60% shorter average time compared to the longest average runtime that was 

recorded at 3870s (90/10 split). Performance differed throughout splits, but in general, 

training became slower with more data. While the splits of 70/30 and 60/40 clock in 

average runtimes at 2660s  and 2470s, respectively, the 70/30 split finds a medium 

ground at 2660s. 
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Figure 4.12  Confusion Matrix for Extra Tree with 90/10 split using bigram 

From Figure 4.12, we can conclude that Extra Tree excels at classifying 

straightforward classes like birth control (99.8% accuracy) but struggles with more 

complex ones like obesity (82% accuracy) similar to Random Forest. While ET 

introduce randomness in feature selection at each node split to potentially reduce 

overfitting compared to RF, this difference seems to have minimal impact on F1-score 

variations across classes in this case. The inherent characteristics of the data likely play 

a more prominent role in the model's performance. 
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4.8 EXTREME GRADIENT BOOST 

Table 4.13  F1-score by algorithm and feature extractor for XG Boost 

Feature 
Algorithm (train/test 

ratio) 
F1-score Accuracy Precision Recall 

BOW 50/50 0.88 0.881 0.883 0.881 

60/40 0.89 0.885 0.888 0.885 

70/30 0.89 0.887 0.89 0.887 

80/20 0.89 0.889 0.892 0.889 

90/10 0.89 0.889 0.893 0.889 

unigram 50/50 0.88 0.884 0.886 0.884 

60/40 0.89 0.889 0.891 0.889 

70/30 0.89 0.892 0.893 0.892 

80/20 0.9 0.897 0.898 0.897 

90/10 0.9 0.897 0.9 0.897 

bigram 50/50 0.88 0.883 0.885 0.883 

60/40 0.89 0.888 0.89 0.888 

70/30 0.89 0.892 0.893 0.892 

80/20 0.9 0.896 0.898 0.896 

90/10 0.9 0.898 0.901 0.898 

trigram 50/50 0.88 0.88 0.881 0.88 

60/40 0.89 0.886 0.887 0.886 

70/30 0.89 0.89 0.891 0.89 

80/20 0.89 0.895 0.896 0.895 

90/10 0.9 0.897 0.899 0.897 

 

Table 4.14  F1-score by algorithm and feature extractor for XG Boost 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 71.8 1813.78 3939.35 404.2 

60/40 88.75 1979.03 4484.64 471.66 

70/30 84.73 2168.48 4984.9 482.16 

80/20 98.67 2420.77 5475.8 530.92 

90/10 101.15 2584.91 5916.39 571.8 
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Figure 4.13  F1-score and Total Time(s) by Feature Extractor and XGBoost splits 

The F1-score performance of the XGBoost models varied little, as Table 4.13 and 

Figure 4.13 illustrates. The TF-IDF (unigram, bigram, trigram) splits of 90/10 and 80/20 

displayed the highest F1-score of 0.90 (unigram and bigram). These models—90/10 

split of BOW, 80/20 split of BOW and TF-IDF trigram, 70/30 split of BOW and TF-

IDF (unigram, bigram, trigram), 60/40 split of BOW and TF-IDF unigram, bigram, 

trigram, and 50/50 split—were not far behind, yielding an F1-score of 0.89. In the 

meantime, every 50/50 split of TF-IDF and BOW obtained an F1-score of 0.88. In 

summary, this means that there is only a 2.2% difference between the highest and lowest 

F1-score, which fall between 0.88 and 0.90. Out of all the feature extraction methods, 

TF-IDF bigram and BOW had the lowest average F1-score (0.91), while TF-IDF 

trigram and unigram had the most (0.92). There was just 2.1% difference between the 

top and bottom performing feature extractors. The XGBoost performance improved 

when the training data set was increased, as seen by the average F1-score rising by 2.2% 

from 0.88 (50/50 split) to 0.90(90/10 split). The average F1-score of 0.89 was obtained 

for the 80/20, 70/30 and 60/40 splits which were only 1.1% lower than that of the 

optimum 90/10 split.  

In terms of runtime (Table 4.14), BOW placed first with 71.80 seconds (50/50 

split), second with 84.73 seconds (70/30 split), and third with 88.75 seconds (60/40 

split). Conversely, the TF-IDF trigram was consistently the feature extractor, taking the 

longest time across all splits and finishing in the bottom three with runtimes of 5916s 
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(90/10 split), 5476s (80/20 split), and 4985s (70/30 split). The feature extractor that 

logged the shortest duration (71.80s) was BOW (50/50 split), which was 82 times faster 

than the longest-logging TF-IDF trigram (5916s) with a 90/10 split. 

With an average duration of 4960s, TF-IDF trigram was the slowest feature 

extraction technique, running around 55 times slower than the fastest feature extractor, 

BOW, with an average speed of 90s. With a 81.6% difference from the shortest average 

runtime (BOW-90s), TF-IDF’s average runtime of 490s positioned it as the second 

quickest feature extractor. With an average runtime of 2190s, TF-IDF bigram was 

95.9% slower than the fastest feature extractor average runtime (BOW). Runtime 

analysis revealed that the split data had an effect, with processing time trending upwards 

with every 10% increase in training data. While the 50/50 split had the least average 

runtime at 1560s, indicating a 31.9% reduction in time, the longest average runtime was 

recorded at 2290s (90/10 split). Performance differed throughout splits, but in general, 

training became slower with more data. While the splits of 80/20 and 60/40 clock in at 

2130s and 1760 seconds, respectively, the 60/40 split finds a medium ground at 1930 

seconds. 

 

Figure 4.14  Confusion Matrix for XGBoost with 90/10 split using bigram 
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Based on Figure 4.14, the XGBoost model achieved impressive results for 

classes like "Birth Control" (F1-score: 0.98) and "Acne" (F1-score: 0.92). However, it 

struggled with "Obesity" and "Weight Loss," only reaching an F1-score of 0.78 in these 

categories. This could be be due to ’s k-nearest neighbour 

4.9 K-NEAREST NEIGHBOUR (KNN) 

Table 4.15  F1-score by algorithm and feature extractor for K-NN 

Feature 
Algorithm (train/test 

ratio) 
F1-score Accuracy Precision Recall 

BOW 50/50 0.65 0.643 0.659 0.643 

60/40 0.65 0.648 0.665 0.648 

70/30 0.66 0.652 0.67 0.652 

80/20 0.66 0.657 0.674 0.657 

90/10 0.66 0.659 0.676 0.659 

unigram 50/50 0.21 0.208 0.755 0.208 

60/40 0.07 0.104 0.67 0.104 

70/30 0.3 0.298 0.771 0.298 

80/20 0.32 0.317 0.803 0.317 

90/10 0.17 0.217 0.705 0.217 

bigram 50/50 0.17 0.183 0.663 0.183 

60/40 0.02 0.078 0.499 0.078 

70/30 0.26 0.276 0.707 0.276 

80/20 0.28 0.29 0.732 0.29 

90/10 0.1 0.18 0.584 0.18 

trigram 50/50 0.17 0.182 0.719 0.182 

60/40 0.01 0.077 0.512 0.077 

70/30 0.26 0.276 0.766 0.276 

80/20 0.27 0.29 0.749 0.29 

90/10 0.1 0.179 0.653 0.179 
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Table 4.16  Runtime (s) by algorithm and feature extractor for K-NN 

Algorithm 
(train/test ratio) 

BOW bigram trigram unigram 

50/50 151.62 11006.75 20067.75 3157.72 

60/40 140.46 10800.37 16568.28 3037.78 

70/30 128.78 9493.36 19034.85 2644.22 

80/20 94.50 7423.43 14875.59 2032.04 

90/10 77.45 4230.91 8773.08 1162.24 

 

Figure 4.15  F1-score and Total Time(s) by Feature Extractor and KNN splits 

Based on Figure 4.15 and Table 4.15, KNN performance showed that an F1-score above 

0.5 could only be achieved by using the BOW feature extractor. KNN combined with 

BOW achieved top highest F1-score at 0.66 for splits 90/10, 80/20 and 70/30. Following 

closely at the second place, BOW with 60/40 and 50/50 splits achieved F1-score of 

0.65. The third highest F1-score, fell low at 0.32, displayed by TF-IDF unigram for 

80/20 splits. Compared to other configurations, TF-IDF unigram, bigram, and trigram 

with a 50/50 split underperformed and took the bottom three for the F1-score with an 

0.01 (trigram), 0.02 (bigram) and 0.07 (unigram). The top performer achieved an F1-

score of 0.66, a 98.5% improvement over the weakest performing configuration (0.01). 
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Among the feature extraction techniques, BOW achieved the highest average F1-score 

of 0.66. This outperformed TF-IDF bigram and trigram, which scored 0.16 (the lowest) 

and TF-IDF unigram at 0.21 F1-score. There was only a notable difference of 75.8% 

between the best and worst performing feature extractor. The KNN model's 

performance did not appear to improve with a larger training data set. For example, the 

80/20 split had the highest average F1-score of 0.38, while the 60/40 split had the lowest 

average F1-score of 0.17. This corresponds to a 55.2% discrepancy. The 70/30 split 

produced a slightly lower average F1-score of 0.37, indicating a 2.6% decline, 

compared to the highest average F1-score (0.38) 80/20 split, while the 50/50 split 

showed an average F1-score of 0.30, indicating a 21% decrease. Likewise, the 60/40 

split's F1-score of 0.19 indicated a 50% decline in performance. 

Based on Table 4.16, the BOW feature extractor finished first in runtime with 

77.45s (90/10 split), second with 94.50s (80/20 split), and third with 128.78s (70/30 

split). The 60/40 split, on the other hand, required the most time with TF-IDF (unigram, 

bigram, trigram) as feature extractors and finished in the bottom three with runtimes of 

16568s, 10800s, and 3038s. The model with the shortest runtime (77.45s) was BOW 

(90/10 split), which was 214 times faster than the slowest model, the TF-IDF trigram 

(16568s) with a 60/40 split. 

The slowest feature extraction approach, TF-IDF trigram, had an average 

duration of 15860s, which was almost 132 times slower than the fastest feature 

extractor, BOW, which had an average speed of 120s. The TF-IDF unigram average 

runtime of 241s was the second quickest feature extractor, with a 50.2% difference from 

the smallest average runtime (BOW-120s). The TF-IDF bigram average runtime 

(8590s) was 98.6% slower than the fastest feature extractor average runtime (BOW). 

The divided data had a minor effect on processing time, with processing time decreasing 

with every 10% increase in training data (Figure 4.8). The 50/50 split had the longest 

average runtime at 8600s, while the 90/10 split had the smallest average runtime at 

3560s, a difference of 58.6%.  While performance varied between split ratios, training 

was progressively slower as data volume increased. Although the 60/40 and 70/30 

divisions have clock times of 7830s and 7640 seconds, respectively, the 80/20 split ran 

for an average of 6110 seconds. 
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Figure 4.16 Confusion matrix of KNN with F1-score and total time at 60/40 split with  
tf-idf trigram 

 

Based on Figure 4.16, almost all classes have very low precision, recall, and F1-score, 

indicating the KNN model is struggling to differentiate between classes effectively. The 

call value of zero for classes “ADHD”, “Anxiety”, “Birth Control”, “Depression” and 

“Obesity” indicates that the model is not identifying any true positive instances for those 

classes. Almost all classes have very low precision, recall, and F1-score, indicating that 

KNN model is struggling to differentiate between classes effectively. The possible 

reasons for the low performance may be due to data imbalance, high feature 

dimensionality or ambiguous features. Since KNN has shown very poor performance, 

alternative models which are more robust such as Linear SVC could be considered for 

this dataset. 
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4.10 CONCLUSION 

This section elaborated on the effects and results achieved by eight different machine 

learning models using four different feature extractors and five train/test splits on drug 

review dataset. In general, the results showed that the performance of Linear SVC is the 

best whereas KNN showed the worst performance in terms of F1-score and total 

processing time. 
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CHAPTER V   

 

 

DISCUSSION 

5.1 INTRODUCTION 

The machine learning algorithms chosen for the multi-class classification of conditions 

in the drug review data set were Decision Tree, Extra Tree, K-nearest Neighbour, 

Logistic Regression, Linear SVC, Multinomial Naïve Bayes, Random Forest, and 

Extreme Gradient Boost. All these models were subjected to four types of feature 

extraction techniques namely Bag-of-Words (BOW) and TF-IDF (unigram, bigram, and 

trigram) to investigate effect of feature extraction techniques. Stratified random 

sampling method with various test sizes (test/train ratio: 50/50, 60/40, 70/30, 80/20, 

90/10) were employed to the models following the feature extraction techniques. The 

split ratios of test and train datasets were experimented to observe the effect of train/test 

dataset size on the classifier algorithms. The performance metrics chosen to evaluate 

the classifiers were F1-score and total time taken to train and test the models. The 

following section summarizes the overall results in terms of mean F1-score and average 

performance time obtained by the selected models, feature extraction techniques and 

sampling methods by visualizing into boxplot chart. 
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5.2 COMPARISON OF F1-SCORE BY ALGORITHM 

Figure 5.1  Comparison of classifier’s F1-score by feature extractor and algorithm. 

Table 5.1 Comparison of classifier’s F1-score by algorithm 

Based on Figure 5.1, the performance based on the F1-score, of the different feature 

extractors and algorithms varied considerably. Looking at the mean F1-score for the 

models (Table 5.1), except for KNN and MNB, all other machine learning models had 

an F1-score of 0.88 and above. The lowest mean F1-score was by KNN (0.30) followed 

by MNB with 0.63 whereas the highest mean F1-score of 0.92 was displayed by Linear 

SVC and Extra Tree. Following closely, RF scored a second highest mean F1-score of 

Algorithm BOW unigram bigram trigram 
Mean F1-
score of 

algorithm 
Linear SVC 0.91 0.90 0.94 0.94 0.92 

Extra Tree 0.92 0.92 0.91 0.91 0.92 

Random Forest 0.92 0.92 0.91 0.90 0.91 

Logistic 
Regression 

0.88 0.90 0.90 0.90 0.89 

XG Boost 0.89 0.89 0.89 0.89 0.89 

Decision tree 0.88 0.88 0.88 0.87 0.88 

MNB 0.86 0.74 0.49 0.44 0.63 

KNN 0.66 0.21 0.16 0.16 0.30 

Mean F1-score 
of feature 
extractors 

0.86 0.79 0.76 0.75  
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0.91. Meanwhile the mean F1-score of XGB and LR were 0.89 followed by DT at 0.88. 

The difference between the highest (average F1-score: 0.92) and the lowest average F1-

score (0.30) was 68%. There were also some variations in the spread of the F1-scores 

for each feature extractor and algorithm. When looking at the minimum(min) and 

maximum(max) F1-scores, the model with the highest min-max difference was KNN 

with 0.50, followed by MNB at 0.42, whereas XGB showed zero min-max difference. 

The rest of the classifiers only showed minimal difference at 0.01 (ET, DT), 0.02 (RF, 

LR) and SVC (0.04). The model that achieved the highest maximum average F1-score 

(all splits) was 0.94 by linear SVC with feature extractor TF-IDF trigram, whereas the 

lowest average F1-score (0.16) was exhibited by KNN using the bigram and trigram 

feature extraction technique. 

The highest average F1-score of 0.96 was obtained using linear SVC with TF-

IDF bi gram and trigram with 90/10 train/test split (Table 4.5). This surpasses the 

previous benchmark of 0.88 by Joshi and Abdelfattah (2021), who employed a similar 

dataset (druglib.com and drug.com) and TF-IDF but with a 80/20 split to investigate 

patient condition classification based on drug reviews. Notably, even the lowest F1-

score observed here (0.88) using linear SVC (bag-of-words with a 50/50 split) exceeds 

Joshi and Abdelfattah (2021) highest score. While both studies share similarities in their 

overall approach, the observed discrepancy in F1-score could stem from several factors. 

Potential contributors include differences in the train/test split ratios employed for data 

partition, the feature extraction techniques utilized (BOW, TF-IDF, Ngram), and the 

text pre-processing steps implemented. It is noteworthy that this study used both 

BeautifulSoup and Regular Expressions for text pre-processing, while Joshi and 

Abdelfattah (2021) only used BeautifulSoup from the Python library. Among other 

classifiers investigated by Joshi and Abdelfattah (2021) were, MNB, Logistic 

Regression, Decision Trees, Extra Trees, and Random Forest with MNB and DT taking 

the bottom two spots. Garg (2021) used the drug review dataset (drugs.com) for 

sentiment analysis on six machine learning models (LR, MNB, linear SVC, perceptron, 

ridge, SGD), also found that Linear SVC outperformed all other models with 93% 

accuracy.  
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On the other hand, Uddin et al. (2022), upon drug sentiment analysis on drug 

review dataset, concluded that RF showed the best accuracy (94.06%) compared to 

Multilayer Perceptron (86.82%), SVC(88.63%) and NB(88.57%) using 80/20 split 

ratio. In the current study, RF showed promising results as the mean F1-score (0.91) 

was second to linear SVC. Besides that, Gawich and Alfonse (2022), also concluded 

that RF showed the best accuracy (0.86)  for drug review analysis (drugs.com dataset) 

comparing 10 different classifiers which includes , MNB, LR, DT, RF, KNN and linear 

SVC with 70/30 ratio. The highest accuracy value achieved in the current study for RF 

was 94.5% (90/10 split, TF-IDF unigram) giving a difference of 0.4%.  Hossain et al. 

(2020) compared linear SVC, DT and KNN to assess the accuracy of sentiment analysis 

in drug review dataset and found that linear SVC performed better with accuracy 

83.08% followed by DT (76.79%) and lastly KNN (55.41%). The performance of KNN 

in this study is the worst (mean F1 -score : 0.30, highest F1-Score : 0.66 (Table 5.1)),  

followed by MNB (mean F1-score: 0.63, highest F1-score : 0.87 (Table 5.1) when 

compared to other classifiers. Parmar et al. (2023), also found that MNB performs the 

worst when compared to LR, DT and RF classifier for drug quality classification using 

sentiment analysis of drug reviews.  

The XGBoost is not as popular as traditional machine learning models (MNB, 

RF, LR, SVM, Tree classifiers) as it is not widely used in drug review datasets, however 

it is being employed in text classification tasks. Qi (2020), compared five machine 

learning models which includes, SVM, KNN, NB and XGBoost for the text 

classification of theft crime. The results showed that XGBoost achieved highest F1-

score of 0.96 followed by NB (0.93), KNN (0.85) and SVM (0.81). However, in this 

study, the best F1-score of XGBoost was 0.90 and the mean F1-score was 0.89. This 

shows that XGBoost, with proper hyperparameter tuning has the potential to be used as 

text classifier of drug review datasets. In summary, the box plot chart provides a good 

overview of the performance of different feature extractors and algorithms on a 

classification task. Linear SVC was the best performing algorithm in this case with its 

best average F1-score at 0.94 (bigram and trigram) (Table 5.1). 
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5.3 COMPARISON OF AVERAGE TOTAL RUNTIME BY ALGORITHM  

Figure 5.2  Comparison of model’s run time by algorithm 

Table 5.2 Average total time (s) by feature extractor and algorithm 

Algorith
m 

Decisio
n Tree 

Extra 
Tree 

KNN 
Linea

r 
SVC 

Logistic 
Regressi

on 

MN
B 

Rando
m 

Forest 

XG 
Boost 

Mean 
runtim

e by 
feature 
extract

or 
BOW 49.35 325.24 118.56 84.34 68.68 0.40 277.20 89.02 127 

unigram 64.35 318.30 2406.8
0 

5.14 37.00 0.65 252.15 492.15 447 

bigram 292.09 2920.7
4 

8590.9
6 

12.82 282.95 0.98 2427.6
2 

2193.3
9 

2090 

trigram 929.28 7222.2
9 

15863.
91 

23.60 741.14 1.89 6337.5
0 

4960.2
2 

4510 

Mean 333.77 2696.6
4 

6745.0
6 

31.48 282.44 0.98 2323.6
2 

1933.6
9 

 

Figure 5.2 and Table 5.2 illustrates the different runtimes taken by the classifiers to train 

and test the drug review dataset. As shown in the boxplot chart, the MNB is the fastest 

model to run with average runtime at 1.0s followed by linear svc at 31.5s. This was 

followed by LR with average runtime at 282s and DT at 333s. LR showed that it is 15% 

faster than DT. The mean runtime of XGB was 28% faster ET and 17% faster than RF. 
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