
ENHANCING MULTI-CLASS TEXT
CLASSIFICATION IN ONLINE DRUG REVIEWS

THROUGH MACHINE LEARNING APPROACHES

2024

BAVAHRNI A/P SUBRAMANIAM

PROJECT SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF
MASTER OF DATA SCIENCE

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY
UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

Pus
at

Sum
be

r

FTSM

ENHANCING MULTI-CLASS TEXT
CLASSIFICATION IN ONLINE DRUG REVIEWS

THROUGH MACHINE LEARNING APPROACHES

2024

BAVAHRNI A/P SUBRAMANIAM

PROJEK YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN
DARIPADA SYARAT UNTUK MEMPEROLEH IJAZAH

SARJANA SAINS DATA

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT
UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

Pus
at

Sum
be

r

FTSM

iii

DECLARATION

I hereby declare that the work in this project is my own except for quotations and

summaries which have been duly acknowledged.

26 June 2024 BAVAHRNI SUBRAMANIAM
 P122569

Pus
at

Sum
be

r

FTSM

iv

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to all those who have contributed to the
completion of this project. First and foremost, I am deeply thankful to my project
supervisor, Associate Professor Dr.Suhaila Zainudin for her guidance, support, and
valuable insights throughout this project journey. Her expertise and encouragement
have been instrumental in shaping this project.

I owe hugely to my dear parents, Mr. Subramaniam Allagan and Mdm.
Leelawathy N. Nalliah for their permanent love and confidence in encouraging me to
go ahead in my study and career. My thanks equally go to my parents-in–law, sister,
Kasthuri, brother, Rooben, brothers-in-law, sisters-in-law, nephews and nieces for the
love and support shown throughout my studies.

This project would have remained a dream had it not been for my dearest
husband, Ir.Ts.Dr. Narendren Rengasamy. His unwavering love, support, and
understanding have been my anchor, providing me with the strength and motivation to
persevere during challenging times.

Finally, I would like to express my profound gratitude to the Almighty for His
blessings, guidance, and strength that have sustained me throughout this endeavour.

Pus
at

Sum
be

r

FTSM

v

ABSTRAK

Fasa pandemik yang lalu telah menekankan kepentingan dan keperluan tindak balas
yang segera dalam pelaksanaan polisi dan amalan bidang kesihatan, terutamanya
apabila melibatkan pengenalan ubat baru. Salah satu langkah kritikal dalam pengenalan
ubat baru adalah, analisis ulasan ubat, di mana maklum balas klinikal tentang
penggunaan ubat dinilai, mengenal pasti risiko berpotensi, dan kesan-kesan sampingan.
Walaubagaimanpun, saiz data yang besar, bentuk data yang tidak berstruktur dan
penggunaan bahasa tabii menyebabkan analisis ulasan ubat yang segera secara tepat dan
berkesan adalah suatu cabaran. Pembangunan terkini dalam pembelajaran mesin,
khususnya pemprosesan bahasa tabii, memberikan peluang untuk menangani cabaran-
cabaran ini. Dalam kajian ini, data yang diperolehi daripada pangkalan data drugs.com
dan drug.lib dianalisis dengan menggunakan lapan algoritma pembelajaran mesin iaitu
Multinomial Naïve Bayes(MNB), Random Forest, Decision Tree, Extra Tree, Extreme
Gradient Boost, Linear Support Vector Classifier(SVC), Logistic Regression, dan K-
Nearest Neighbour. Bagi mengkaji kesan fitur, algoritma dan pecahan data latihan/ujian
pada skor-F1 dan masa, empat jenis fitur (bag-of-words (BOW), term frequency-inverse
document frequency (tf-idf) unigram, bigram, dan trigram) dan 5 jenis pecahan
latihan/ujian (50/50, 60/40, 70/30, 80/20, 90/10) telah digunakan. Keputusan kajian
mendapati Linear SVC memiliki skor-F1 yang tertinggi, manakala MNB pula
mengambil masa yang paling singkat. Selain itu, kajian juga mendapati bahawa
pemilihan fitur memberikan impak kepada skor-F1 dan keseluruhan masa yang diambil
oleh sesuatu algoritma bagi menyelesaikan turutan kod dimana pengunaan BOW
memberikan skor-F1 yang tertinggi dan masa yang paling pendek. Secara
keseluruhannya, kombinasi model linear SVC dengan pecahan 90/10 bersama tf-idf
bigram memberikan keputusan yang paling optimum. Kajian ini memberikan
pengetahuan yang berharga tentang impak fitur, pembahagian set data latihan/ujian, dan
algoritma pada data ulasan ubat yang boleh digunapakai di dalam bidang kesihatan.

Pus
at

Sum
be

r

FTSM

vi

ABSTRACT

The recent pandemic highlighted the importance and need for a quick response in the
implementation of healthcare policies, and practices, especially when it comes to
introduction of new drugs. Drug review analysis, where the clinical feedback on the
drug usage is evaluated, identifying potential risks, and adverse effects is a critical step
in this. However, as the data obtained is typically large in number, unstructured in form,
and often expressed using natural language, processing it accurately, effectively and in
time was challenging. The recent development in machine learning, specifically Natural
Language processing, provided an opportunity for these challenges to be addressed. In
this study, data obtained from drugs.com and drug.lib was analysed under eight different
machine learning algorithms, Multinomial Naïve Bayes (MNB), Random Forest(RF),
Decision Tree (DT), Extra Tree (ET), Extreme Gradient Boost (XGB), Linear Support
Vector Classifier(SVC), Logistic Regression, and K-Nearest Neighbour(KNN). Four
different feature extractors bag-of-words (BOW), term frequency-inverse document
frequency (tf-idf) unigram, bigram and trigram, and 5 different train/test splits (50/50,
60/40, 70/30, 80/20, 90/10) were also employed to study the effect of the different
feature extractors, algorithms, and splits on the F1 -score and total time. Linear SVC
had the highest F1 score, while MNB had the shortest time. It was observed that the
choice of feature extractor had an impact on the F1 score and total time, with BOW
having the highest F1 score and lowest time. Overall, the linear SVC with 90/10 split
and tf-idf bigram combination was the most optimum approach. This study provided
valuable insight on the impact of feature extractor, split and algorithm on drug review
data which is particularly useful in the healthcare field.

Pus
at

Sum
be

r

FTSM

vii

TABLE OF CONTENTS

DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRAK v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF ILLUSTRATION xii

LIST OF ABBREVIATIONS xv

CHAPTER I INTRODUCTION

1.1 Background 1

1.2 Problem Statement 3

1.3 Research Objectives 4

1.4 Research Scope 4

1.5 Project Structure 4

CHAPTER II LITERATURE REVIEW

2.1 Introduction to Drug Review 6

2.2 Introduction to Machine Learning 7

2.3 History of Machine Learning 8

2.4 Supervised learning 9

2.5 Unsupervised learning 10

2.6 Semi-supervised learning 10

2.7 Reinforced learning 11

2.8 Text Classification 13

2.9 Text Pre-processing 15

2.10 Classification Algorithms 16

2.10.1 Multinomial Naive Bayes 16
2.10.2 Logistic Regression 17
2.10.3 Linear Support Vector Classification 18
2.10.4 Random Forest 19
2.10.5 Decision Tree 20
2.10.6 Extra Tree 21
2.10.7 Extreme Gradient Boosting 21

Pus
at

Sum
be

r

FTSM

viii

2.10.8 K-Nearest Neighbours 22

2.11 Feature Extractors 23

2.11.1 Bag Of Words 25
2.11.2 Term Frequency-Inverse Document Frequency 25

2.12 Confusion Matrix 26

2.13 Performance metrics 27

2.14 Related work 28

CHAPTER III METHODOLOGY

3.1 Introduction 41

3.2 Drug review dataset 41

3.3 Data cleaning 44

3.3.1 Remove duplicates 45
3.3.2 Remove null values 45
3.3.3 Remove attribute 46

3.4 Exploratory Data Analysis 47

3.5 Text Pre-processing 51

3.6 Train/test splits 58

3.7 Feature Extraction 58

3.8 Machine Learning Models 60

3.9 Performance Metrics 60

3.10 Performance Evaluation 60

3.11 Tools used 61

CHAPTER IV RESULTS

4.1 Introduction 62

4.2 Multinomial Naïve Bayes 62

4.3 Logistic Regression 66

4.4 Linear Support Vector Machine 69

4.5 Random Forest 73

4.6 Decision Tree 77

4.7 Extra Tree 81

4.8 extreme gradient boost 85

4.9 K-nearest Neighbour (KNN) 88

4.10 Conclusion 92

Pus
at

Sum
be

r

FTSM

ix

CHAPTER V DISCUSSION

5.1 Introduction 93

5.2 Comparison of F1-score by algorithm 94

5.3 Comparison of average total runtime by algorithm 97

5.4 Comparison of F1-score by Feature Extractor 99

5.5 Comparison of average total runtime by feature extractor 101

5.6 Effect of Sampling Methods on Performance of F1-score
by algorithm 103

5.7 Effect of sampling methods on average total runtime by
algorithm 105

5.8 Conclusion 107

CHAPTER VI CONCLUSION

6.1 Introduction 108

6.2 General Conclusion 108

6.3 Research Limitation 110

6.4 Suggestions for future work 110

6.5 Key Contribution 110

REFERENCES 112

APPENDICES

Appendix A Sample source code 125

Pus
at

Sum
be

r

FTSM

x

LIST OF TABLES

Table No. Page

Table 2.1 Summary of Related Work 33

Table 3.1 List of attributes with their types and descriptions for drug
review (druglib.com) dataset 42

Table 3.2 List of attributes with their types and descriptions for drug
review(drugs.com) dataset 43

Table 3.3 Tools Used 61

Table 4.1 F1-score by algorithm and feature extractor for MNB 63

Table 4.2 Runtime (s) by algorithm and feature extractor for MNB 63

Table 4.3 F1-score by algorithm and feature extractor for Logistic
Regression 66

Table 4.4 Runtime(s) by algorithm and feature extractor for Logistic
Regression 66

Table 4.5 F1-score by algorithm and feature extractor for Linear
SVC 69

Table 4.6 Runtime(s) by algorithm and feature extractor for Linear
SVC 69

Table 4.7 F1-score by algorithm and feature extractor for Random
Forest 73

Table 4.8 Runtime(s) by algorithm and feature extractor for Random
Forest 73

Table 4.9 F1-score by algorithm and feature extractor for Decision
Tree 77

Table 4.10 Runtime (s) by algorithm and feature extractor for
Decision Tree 77

Table 4.11 F1-score by algorithm and feature extractor for Extra
Tree 81

Table 4.12 Runtime (s) by algorithm and feature extractor for Extra
Tree 81

Table 4.13 F1-score by algorithm and feature extractor for XG Boost 85

Pus
at

Sum
be

r

FTSM

xi

Table 4.14 F1-score by algorithm and feature extractor for XG Boost 85

Table 4.15 F1-score by algorithm and feature extractor for K-NN 88

Table 4.16 Runtime (s) by algorithm and feature extractor for K-NN 89

Table 5.1 Comparison of classifier’s F1-score by algorithm 94

Table 5.2 Average total time (s) by feature extractor and algorithm 97

Table 5.3 Effect of Sampling Methods on Performance of F1-score
by models 103

Table 5.4 Effect of train/test size on average of total time by
machine learning models 105

Table 6.1 Comparison between current study and Joshi and
Abdelfattah (2021) 108

Pus
at

Sum
be

r

FTSM

xii

LIST OF ILLUSTRATION

Figure No. Page No.

Figure 3.1 Flowchart of drug review classification using machine
learning models 41

Figure 3.2 Raw sample data for Druglib.com 43

Figure 3.3 Raw data sample for drugs.com 43

Figure 3.4 Count of entries for each attribute in drug.lib and
drug.com datasets before data cleaning 44

Figure 3.5 Output of results for missing values in drug.lib and
drug.com datasets 46

Figure 3.6 Count of entries for each attribute in drug.lib and
drug.com datasets after data cleaning 46

Figure 3.7 Output of results of both dataset after data cleaning 47

Figure 3.8 Description of cleaned drug review dataset comprising of
all medical conditions 47

Figure 3.9 Selected top 10 conditions and their corresponding counts. 49

Figure 3.10 Distribution of conditions (classes) in the dataset 49

Figure 3.11 Output of review length statistic in final data frame 50

Figure 3.12 Distribution of review lengths shown in box plot chart 50

Figure 3.13 Distribution of review lengths in data frame 50

Figure 3.14 Text preprocessing done to achieve a clean review data 52

Figure 3.15 Output of review before and after text preprocessing 52

Figure 3.16 Word cloud of birth control 53

Figure 3.17 Word cloud of depression 53

Figure 3.18 Word cloud of pain 54

Figure 3.19 Word cloud of anxiety 54

Figure 3.20 Word cloud of acne 54

Figure 3.21 Word cloud of bipolar disorder 55

Pus
at

Sum
be

r

FTSM

xiii

Figure 3.22 Word cloud of insomnia 55

Figure 3.23 Word cloud of weight loss 56

Figure 3.24 Word cloud of obesity 57

Figure 3.25 Word cloud of ADHD 57

Figure 3.26 Excerpt from Colab for 90/10 (train/test) split model. 58

Figure 3.27 Excerpt from Google Colab on the use of count vectorizer
to implement BOW as feature extraction 59

Figure 3.28 Excerpt from Google Colab on the use of tf-idf vectorizer
as feature extraction technique. 59

Figure 4.1 F1-score and Total Time(s) by Feature Extractor and
Algorithm for MNB. 62

Figure 4.2 Confusion Matrix for MNB 90/10 with bigram 65

Figure 4.3 F1-score and Total Time(s) by Feature Extractor and
Algorithm for Logistic Regression 67

Figure 4.4 Confusion Matrix of LR with 90/10 split and bigram 68

Figure 4.5 F1-score and Total Time(s) by Feature Extractor and
Linear SVC splits 70

Figure 4.6 Confusion matrix of linear SVC with F1-score and total
time at 90/10 split with tf-idf bigram 72

Figure 4.7 F1-score and Total Time(s) by Feature Extractor and
Random Forest splits 74

Figure 4.8 Confusion matrix for Random Forest at 90/10 split with
bag-of-words 76

Figure 4.9 F1-score and Total Time(s) by Feature Extractor and DT
splits 78

Figure 4.10 Confusion Matrix of Decision Tree with 90/10 split using
bigram 80

Figure 4.11 F1-score and Total Time(s) by Feature Extractor and ET
splits 82

Figure 4.12 Confusion Matrix for Extra Tree with 90/10 split using
bigram 84

Figure 4.13 F1-score and Total Time(s) by Feature Extractor and
XGBoost splits 86

Pus
at

Sum
be

r

FTSM

xiv

Figure 4.14 Confusion Matrix for XGBoost with 90/10 split using
bigram 87

Figure 4.15 F1-score and Total Time(s) by Feature Extractor and
KNN splits 89

Figure 4.16 Confusion matrix of KNN with F1-score and total time at
60/40 split with tf-idf trigram 91

Figure 5.1 Comparison of classifier’s F1-score by feature extractor
and algorithm. 94

Figure 5.2 Comparison of model’s run time by algorithm 97

Figure 5.3 Comparison of average F1-score by feature extractor 99

Figure 5.4 Comparison of average total time by algorithm and feature
extractor 101

Figure 5.5 Effect of Sampling Methods on Performance of F1-score
by models 103

Figure 5.6 Effect of train/test size on average of total time by
machine learning models 105

Pus
at

Sum
be

r

FTSM

xv

LIST OF ABBREVIATIONS

ADHD Attention Deficit Hyperactivity Disorder

ADR Adverse Drug Reaction

AI Artificial Intelligence

AUC Area Under the Curve

BI Business Intelligence

BOW Bag-of-Words

CART Classification and Regression Tree

COVID coronavirus disease

CPU Central Processing Unit

DCT Discrete Cosine Transform

DNH Distributed Nearest Hash

DT Decision Tree

ET Extra Tree

ETC Extra Tree Classifier

FN False Negative

FP False Positive

FPGA Field-Programmable Gate Arrays

GAN Generative Adversarial Networks

GCN graph convolutional networks

GPU Graphics Processing Unit

IQR Inter Quartile Range

KNN K-Nearest Neighbour

LASSO Least Absolute Shrinkage and Selection Operator

LDA Latent Dirichlet Allocation

LR Logistic Regression

ML Machine Learning

MLP Multi-Layer Perceptron

Pus
at

Sum
be

r

FTSM

xvi

MNB Multinomial Naïve Bayes

NB Naïve Bayes

NLP Natural Language Processing

RF Random Forest

SGD Stochastic Gradient Descent

SVC Support Vector Classifier

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

TN True Negative

TP True Positive

UCI University of California, Irvine

USA United States of America

VC Vapnik-Chervonenkis theory

XAI Explainable Artificial Intelligence

XGB Extreme Gradient Boost

Pus
at

Sum
be

r

FTSM

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

The recent pandemic that ravaged globally not only disrupted the livelihood of the

masses, but it also took a hefty toll on the healthcare system, highlighted the

shortcomings and limitation of the current practises, specifically when it came to the

introduction of new medication and treatments. The sudden demand for new vaccines

and drugs, and the time pressure exposed the challenges associated with processing of

clinical trials data. When large scale trials were conducted, there was a need for an

accurate and fast way to process and analyse the data collected (Kashte et al. 2021). The

multiple parallel trials conducted across the globe generated huge amounts of data that

was not only limited to the adverse drug effects and other medical parameters, but also

contained additional information such as demographics and geographical data. This

large data sets, if used well, would be of utmost beneficial in the introduction of new

drugs (Hiscott et al. 2020).

Another lesson learned from the recent pandemic was on the public perception

and the need for greater transparency. In Malaysia, the Ministry of Health (MoH) lead

the way by making Covid-19 related raw data publicly available to the masses. The

demand and expectation for information from the general public was not limited to

merely gaining access to clinical data but, it also involved a feedback system where they

can also provide real time valuable input back to the healthcare policymakers. It was

also observed that the public expected that their feedback be taken seriously and in most

cases, a personalised reply is provided (Lee et al. 2022). This was a crucial aspect when

it came to introduction of new treatments and drugs as it not only resulted in an increase

in consumer confidence and acceptance of the drugs, but it also lead to an effective

Pus
at

Sum
be

r

FTSM

2

implementation of various healthcare policies, such as the national Covid -19

vaccination policy introduced by MoH (Ain Umaira Md Shah et al. 2020). Artificial

Intelligence and machine learning (ML) have woven themselves into the fabric of our

daily lives, subtly and sometimes overtly shaping our experiences. From movies and

music to news and products, AI-powered algorithms personalize content, catering to

our individual preferences (Shuai Zhang et al. 2019). Virtual assistants like Siri and

Alexa handle tasks like scheduling appointments, controlling smart home devices, and

providing information - enhancing convenience and automating daily routines

(Rajakumaran et al. 2023). Adaptive learning platforms powered by ML tailor

educational content and pace to individual student needs, improving learning outcomes

(Daugherty et al. 2022). Ride-sharing apps and smart traffic management systems

powered by AI are optimizing routes and reducing congestion, impacting our daily

commutes (Ang et al. 2022). Chatbots and automated systems handle basic customer

inquiries, freeing up human agents for complex issues and improving overall

efficiency(Ngai et al. 2021). From manufacturing robots to automated data analysis, AI

is driving increased efficiency and productivity across various sectors (Jan et al. 2023).

Artificial Intelligence algorithms are assisting doctors in analysing medical images and

making diagnoses, potentially leading to earlier detection and improved outcomes

(Huang et al. 2021). ML models are accelerating the drug discovery process, bringing

us closer to faster development of life-saving medications (Choudhury et al. 2022).

Tailoring treatment plans to individual patients based on vast data sets, AI holds

promise for a future of precise and effective healthcare (Alowais et al. 2023)

The digital age has witnessed an explosion of user-generated content on health

and wellness, with online drug reviews taking centre stage. This readily available

data, constantly growing with every shared experience, holds immense potential for

understanding patient perspectives on various medications (Anjali & GK 2022). While

clinical data relies on formal medical reports and records, online reviews provide

insights through unfiltered, everyday language (Joshi & Abdelfattah 2021) which

includes slang, emojis, or personal anecdotes. Deriving valuable knowledge about

patient treatment responses from these large dataset reviews often hinges on time-

consuming, laborious manual reviews of textual data, underscoring the need for

automated analysis methods (Ling 2023). The rise of machine learning and NLP has

Pus
at

Sum
be

r

FTSM

3

unlocked exciting possibilities for extracting crucial insights from online drug

reviews, enhancing pharmacovigilance monitoring and proactive identification of

potential drug safety concerns (Anjali & GK 2022).

1.2 PROBLEM STATEMENT

With the increased use of information technology, social media and other digital

documentation and data gathering tools especially within the healthcare industry, a huge

amount of data is amassed. These large datasets, often running into hundreds of

thousands if not million data points contains important information that when put to use

would greatly benefit and accelerate response time and enable a comprehensive drug

review to be conducted prior to its release. However, these large data cannot be

processed using conventional means, either manually or via low level spreadsheets. The

full magnitude of information obtained in the data would not be realised in this way.

Hence, a new problem is found, where although huge amounts of data is available, a

new method and tool needs to be used to effectively make sense of it.

The use of and access to information technology tools such as web-based data

collection and feedback system is continuously growing. Locally, the collection of

adverse drug reaction ADR reports on the Covid-19 vaccine via mysejahtera was an

example where the consumer gets to directly input their feedback and reaction on certain

drugs and vaccines to the relevant authorities. Besides resulting in huge amounts of

data, the data obtained is also often unstructured in form. The use of natural language,

conversational slang, non-numerical feedback and non-standard terminology add to the

complexity in processing these information. This leads to a time-consuming process

where each review and response needs to be evaluated manually, once again leading to

not only delay in obtaining information but also a possible lower accuracy.

Joshi and Abdelfattah (2021) had used similar method and drug review datasets

for multi-label classification, however the study did not explore on the use of different

features, sampling methods and machine learning models such as XGB and KNN.

Pus
at

Sum
be

r

FTSM

4

1.3 RESEARCH OBJECTIVES

1. To analyse the effect of different machine learning models and feature extraction

techniques on drug review dataset

2. To identify the best machine learning model and feature extraction technique in

terms of F1-score and runtime

1.4 RESEARCH SCOPE

This study was focused on multi-label text classification of patient conditions based on

online drug review dataset obtained from publicly available database (UCI Machine

Learning Repository) which was last updated in 2018. Only top 10 conditions were

selected for the study based on the reviews submitted by consumers in USA. Only eight

machine learning classifiers (Multinomial Naïve Bayes, Linear Support Vector

classifier, Logistic Regression, Random Forest, Extra Tree, Decision Tree, Extreme

Gradient Boost and K-Nearest Neighbour) and four feature extraction techniques were

utilized for the study. To ensure balanced class representation in both training and test

data, we employed stratified sampling techniques, examining five split ratios: 90/10,

80/20, 70/30, 60/40, and 50/50. Due to the limitations of accuracy in imbalanced

datasets, F1-score, which considers both precision and recall, was chosen as the primary

performance metric for this study. Besides that, to assess the computational speed time,

the time taken to train and test each algorithm in Colab environment were recorded.

1.5 PROJECT STRUCTURE

This project is structured in a conventional format, split into 6 different chapters.

Chapter 1 : Introduction, the overall background of the project, together with the

research objectives and research scope and limitations were discussed.

Chapter 2 : Literature Review presents a theoretical overview on key terms and

aspects of machine learning and text classification approaches. Past research that

utilised similar machine learning algorithm were also discussed.

Pus
at

Sum
be

r

FTSM

5

Chapter 3 : Methodology. In this chapter, the overall methods used for this study

was explained in detail.

Chapter 4 : Results provides a graphical representation and a brief explanation

of the results obtained from the different approaches applied.

Chapter 5 : Discussion is where in depth discussions from an holistic perspective

was done. Looking at the various aspects and comparing the results to past studies.

Chapter 6 : Conclusion. This chapter highlights the general conclusion of the

study and how it ties to the research objectives. Suggestions for future work and key

contributions of this study was also discussed in this chapter.

Pus
at

Sum
be

r

FTSM

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION TO DRUG REVIEW

Pharmacovigilance, as defined by the World Health Organization (WHO), encompasses

the activities of identifying, evaluating, understanding, and preventing Adverse Drug

Reactions (ADRs) (Gawich & Alfonse 2022). While drugs undergo rigorous testing

before approval, many adverse effects are only discovered after widespread use in the

real world (Saad et al. 2021). User-generated drug reviews, often containing

information on patient conditions, experiences, and side effects, offer a valuable source

of data for pharmacovigilance efforts. The rapid growth of electronically accessible

health data, coupled with the ability of Natural Language Processing (NLP) and

machine learning to handle large volumes of text, has opened new avenues for

pharmacological monitoring (Anjali & GK 2022). One application lies in drug selection

accuracy. By analyzing user reviews and patient conditions, NLP and machine learning

can help healthcare professionals identify the most effective drugs for specific

situations. Text mining techniques can further aid this process by extracting data

patterns, trends, and potential knowledge from user-generated reviews (Haryadi et al.

2022). Classifying patient conditions based on drug reviews can not only reveal

previously unknown ADRs but also alert healthcare professionals to potential risks

associated with medications. Ultimately, selecting the right drug for a patient's

condition not only improves treatment outcomes but also increases patient satisfaction

and medication adherence (Haque et al. 2023) Therefore, careful selection of

appropriate machine learning methods for drug review classification tasks is crucial for

advancing pharmacovigilance efforts.

Pus
at

Sum
be

r

FTSM

7

2.2 INTRODUCTION TO MACHINE LEARNING

The promising field of machine learning (ML) has rapidly ascended to a prominent

position within the burgeoning domain of artificial intelligence (AI). It is crucial to

dispel the misconception that ML and AI are synonymous. As delineated by Russell

and Norvig (2010), AI encompasses a broader spectrum of capabilities, including

reasoning, problem-solving, and adaptation. Within this framework, ML emerges as a

potent engine, enabling AI systems to acquire and refine knowledge from data in an

autonomous manner, independent of explicit programming (Alpaydin 2021 ; Kufel et

al. 2023). This paradigm shift empowers AI with the ability to learn from experience,

akin to a dynamic and adaptable actor in a complex performance. ML boasts a diverse

repertoire of techniques, each meticulously designed for specific roles. Supervised

learning, akin to a seasoned mentor, guides algorithms by providing labelled data

(paired inputs and desired outputs), enabling them to map future inputs to the

corresponding outputs with accuracy (Russell & Norvig 2010). This empowers

predictive feats across diverse domains, such as market trend forecasting or image

categorization (James et al. 2021). Conversely, unsupervised learning, the intrepid

explorer, thrives in the absence of labels, uncovering hidden patterns and relationships

within data (Alloghani et al. 2020).

However, the development of ML within AI is not without its significant

challenges. Data biases, which can arise from stereotypical representations within

training data, necessitate the adoption of responsible data sourcing practices and the

implementation of bias mitigation techniques (Verma et al. 2021) The lack of

explanation ability and interpretability in complex ML models raises concerns

regarding accountability and potential misuse, highlighting the need for further research

into model transparency techniques (Miller 2019). Furthermore, ethical considerations

surrounding the societal implications of ML necessitate careful reflection and the

development of robust ethical frameworks to guide responsible development and

deployment (Floridi 2023). Despite these challenges, the future of ML within AI

remains promising. Recent advancements, such as the Transformer architecture, have

revolutionized natural language processing with breakthroughs in translation,

summarization, and question answering tasks (Choi & Lee 2023).. Federated learning

Pus
at

Sum
be

r

FTSM

8

addresses privacy concerns by enabling collaborative training on decentralized data,

thereby enhancing model generalizability (Yu et al. 2023) Additionally, the

development of Explainable AI (XAI) techniques is shedding light on the inner

workings of complex models, fostering trust and transparency in AI systems (Arrieta et

al. 2020).

2.3 HISTORY OF MACHINE LEARNING

The seeds of machine learning (ML) sprouted in the 1940s and 50s, nurtured by the

burgeoning fields of cybernetics, control theory, and computational learning. Alan

Turing's visionary 1950 paper, "Computing Machinery and Intelligence," and Frank

Rosenblatt's groundbreaking creation of the Perceptron in 1958, the first artificial neural

network, laid the groundwork for the explosive growth of ML research in the following

decades (Rosenblatt 1962 ; Turing 2009). The 1960s and 1970s witnessed a golden age,

with Arthur Samuel officially coining the term "machine learning" in 1959, the rise of

powerful algorithms like decision trees and support vector machines, and even a

temporary fascination with knowledge-based systems that relied on symbolic reasoning

(Alpaydin 2020 ; Samuel 2000). While these early forays may not resemble the data-

driven giants of today's ML landscape, they offer a fascinating glimpse into the

evolution of this transformative technology.

The 1980s and 90s saw a decline in AI research funding and interest, often

referred to as the "AI winter” (Toosi et al. 2021). However, this period also laid the

groundwork for future breakthroughs. Theoretical advances like Vapnik-Chervonenkis

theory (VC dimension) provided a rigorous framework for understanding generalization

and model selection in ML (Liu 2023). Renewed interest in neural networks emerged,

spurred by successes in backpropagation algorithms and advancements in

computational power. The proliferation of data in the 21st century has fuelled an

unprecedented renaissance in ML. Key drivers include the rise of deep learning, deep

neural networks with multiple hidden layers have achieved remarkable performance in

diverse tasks, from image recognition to natural language processing (Alom et al. 2019)

Availability of powerful computing resources is another factor affecting the uptake of

ML. GPUs and specialized hardware have significantly accelerated training times for

Pus
at

Sum
be

r

FTSM

9

complex models(Khan et al. 2022). Similarly, tools like TensorFlow and PyTorch have

made ML accessible to a broader audience, fuelling innovation and collaboration

(Mayer & Jacobsen 2020) Types of Machine Learning

Machine learning (ML) has permeated diverse fields, prompting a need for a

structured understanding of its various approaches. ML techniques can generally be

grouped in to 3 main groups namely Supervised Learning, Unsupervised Learning, and

Reinforced learning (Alsharif et al. 2020).

2.4 SUPERVISED LEARNING

The foundation of supervised learning lies in its labelled data, where each input

observation is paired with its corresponding desired output. This allows algorithms to

learn a mapping between inputs and outputs, enabling them to predict future outputs

with remarkable accuracy. Supervised learning algorithms thrive on labelled training

data, where each data point consists of features (inputs) paired with corresponding target

values (labels). During training, the algorithm analyses this data, seeking patterns and

relationships between features and labels. It essentially learns a mapping function that

associates certain feature combinations with specific outputs. Once trained, the

algorithm can leverage this mapping function for prediction. When given new input

data, it analyses the features and identifies the output (label in classification, value in

regression) most likely associated with those features based on the learned patterns

(Tufail et al. 2023).

The ultimate goal of a supervised learning model is to perform well on unseen

data. Whether classifying data points into distinct categories or estimating continuous

values, the model strives to accurately predict the appropriate label or output for any

new input it encounters (Tufail et al. 2023). This prowess manifests in various tasks,

including regression, where algorithms predict continuous values like market trends or

housing prices (Hastie et al. 2009 ; James et al. 2021), and classification, where

algorithms categorize data points into distinct classes, as seen in image recognition

(Sarker 2021) and sentiment analysis (Wankhade et al. 2022).

Pus
at

Sum
be

r

FTSM

10

Recent advancements in supervised learning are pushing the boundaries of

what's possible. Transformers, for instance, have revolutionized natural language

processing with their groundbreaking performances in translation, summarization, and

question answering (Patwardhan et al. 2023). Another noteworthy leap forward is

Bayesian Deep Learning, which integrates probabilistic approaches with deep neural

networks, enhancing the quantification of uncertainty and interpretability of complex

models (Deodato 2019). These advancements highlight the dynamic and ever-evolving

nature of supervised learning, promising further breakthroughs in diverse domains

(Burkart & Huber 2021).

2.5 UNSUPERVISED LEARNING

In contrast to its supervised counterpart, unsupervised learning operates in the realm of

unlabelled data. This category seeks to unearth hidden patterns and relationships within

data, akin to an explorer deciphering an unknown map. Common tasks within this realm

include clustering where data points are grouped together based on shared

characteristics, enabling tasks like customer segmentation for targeted marketing

(James et al. 2021) . Dimensionality Reduction where complex data is simplified for

efficient analysis, facilitating visualization of high-dimensional datasets, is another task

under the unsupervised learning approach. (Usama et al. 2019).

Recent advancements within unsupervised learning have brought forth the

Generative Adversarial Networks (GANs). These models generate realistic data,

enabling tasks like creating high-resolution images or synthetic speech(Dash et al.

2023). Autoencoders are another recent development in unsupervised machine learning.

This technique learns compressed representations of data, proving valuable for anomaly

detection and data dimensionality reduction (Boquet et al. 2020).

2.6 SEMI-SUPERVISED LEARNING

Partially labelled data, where most labels are missing, poses a challenge for learning

accurate models. Semi-supervised methods can leverage these few labelled examples to

infer labels for the vast unlabelled data, enriching the training set. Similarly, classifying

movie genres from synopses can benefit from utilizing labelled examples alongside

Pus
at

Sum
be

r

FTSM

11

unlabelled synopses to refine genre detection. While semi-supervised learning can boost

performance compared to purely supervised methods with limited labelled data, it's

important to acknowledge that the accuracy may not always surpass supervised learning

with a full set of labels (Alpaydin 2021 ; Tufail et al. 2023). The effectiveness depends

on data characteristics, chosen algorithms, and the specific task at hand. Nonetheless,

for scenarios with scarce labelled data, semi-supervised learning offers a powerful way

to unlock the potential of partially-labelled datasets (Tufail et al. 2023).

There have been recent developments in the semi supervised machine learning

approach. The graph-based methods where the inherent structure of data through graphs

is exploited has led to powerful semi-supervised algorithms. Techniques like graph

convolutional networks (GCNs) can effectively propagate label information across data

points connected through edges, leading to improved performance on tasks like image

segmentation and protein folding (Song et al. 2022).. Generative adversarial networks

(GANs) and their variants are also increasingly being used to generate synthetic labelled

data, augmenting the existing labelled dataset and enriching the training process. This

can be particularly beneficial in scenarios with limited labelled data (Tu & Yang 2019).

Active learning is another advancement in semi-supervised ML techniques. Choosing

which unlabelled data points to label strategically can significantly improve the

efficiency of semi-supervised learning. Recent advances in active learning algorithms

focus on identifying the most informative and impactful data points for labelling,

leading to better model performance with less manual effort (Flores & Verschae 2022).

Uncertainty quantification that involves understanding the uncertainty associated with

predictions from semi-supervised models is another crucial improvement as it facilitates

building of trust and transparency. Recent research focuses on developing techniques

to quantify uncertainty, allowing users to assess the confidence of the model's

predictions {Zhao, 2020 #191.

2.7 REINFORCED LEARNING

Reinforcement learning embodies the self-taught student, continuously interacting with

its environment to refine its behaviour. This category operates through trial and error,

receiving rewards for desirable actions and penalties for undesirable ones, ultimately

Pus
at

Sum
be

r

FTSM

12

maximizing its reward. Common tasks tackled by reinforcement learning include

controlling of robots and automation, enabling robots to learn optimal navigation and

manipulation strategies (Mnih et al. 2015 ; Szepesvári 2022), and Game Playing, where

complex games like Go and StarCraft 2 are mastered by employing an interactive

approach (Moerland et al. 2023 ; Silver et al. 2016).

Recent advancements within reinforcement learning include Deep Q-learning.

This technique combines deep neural networks with reinforcement learning for

improved performance and scalability (Kufel et al. 2023 ; Mnih et al. 2015). Multi-agent

Reinforcement Learning is another recent development in reinforced learning. This

framework enables multiple agents to learn and cooperate within complex environments

(Lowe et al. 2017 ; Zhang et al. 2021).

The frontiers of ML are constantly expanding, witnessing the emergence of new

categories and hybrid approaches. Notably, Explainable AI (XAI) is gaining traction,

aiming to demystify complex models and foster trust and transparency (Belle &

Papantonis 2021). Additionally, Federated learning addresses privacy concerns by

enabling model training on decentralized data, enhancing generalizability and security

(Li et al. 2020) Natural Language Processing

Natural Language Processing (NLP) is a rapidly evolving field within Artificial

Intelligence (AI) focused on empowering computers to understand and manipulate

human language in its diverse forms, including text and speech (Brown et al. 2020).

This pursuit delves into the intricate workings of human language comprehension and

usage, seeking to unlock the secrets of how we communicate effectively. By gleaning

these insights, NLP researchers develop sophisticated tools and techniques that equip

computers with the ability to handle natural language tasks like humans do. These tasks

encompass a wide range, from sentiment analysis and text classification to speech

recognition/synthesis and semantic analysis (Chowdhary & Chowdhary 2020).

The foundation of NLP lies in a rich confluence of disciplines, drawing upon

expertise from computer science, information science, linguistics, artificial intelligence,

robotics, and even psychology. This interdisciplinary approach fosters a holistic

Pus
at

Sum
be

r

FTSM

13

understanding of language, enabling the development of robust and adaptable NLP

models. The impact of NLP is readily apparent in our daily lives, with applications

permeating diverse sectors. Companies leverage NLP capabilities to automate services

like machine translation, facilitating global communication and knowledge exchange

(Chowdhary & Chowdhary 2020). Additionally, NLP powers tasks like parts-of-speech

tagging and resume parsing, streamlining processes and enhancing data analysis

(Baviskar et al. 2021).

Looking beyond current applications, NLP holds immense potential for shaping

the future of human-computer interaction. Advancements in conversational AI promise

seamless and nuanced dialogue between humans and machines, blurring the lines

between natural and artificial communication (Brown et al. 2020 ; Chowdhary &

Chowdhary 2020). Moreover, NLP's influence is extending into fields like healthcare

and education, offering innovative solutions for personalized medical diagnosis and

interactive learning experiences. The future of NLP is brimming with exciting

possibilities, driven by continuous research and advancements in areas like deep

learning and neural networks. As NLP continues to evolve, we can expect even more

profound breakthroughs that bridge the gap between machines and human

communication, empowering us to interact with technology in a more natural and

intuitive way.

2.8 TEXT CLASSIFICATION

Text classification, a cornerstone of NLP, revolves around automatically analysing

textual data and assigning relevant categories based on its content. Also known as

document classification, it leverages machine learning techniques to map predefined

categories onto text documents (Rosquist 2021). This supervised learning approach

finds applications in diverse areas such as spam filtering, search engine optimization,

sentiment analysis, and product review mining (Anvar Shathik & Krishna Prasad 2020).

Since the early 1990s, the combination of machine learning and natural language

processing (NLP) has attracted a lot of interest in the understanding of linguistic

structures (McShane & Nirenburg 2021). Text classification tasks, a subfield within

Pus
at

Sum
be

r

FTSM

14

NLP, can be categorized based on their reliance on machine learning or not, as well as

their labelling strategy. In multi-class classification, each data point belongs exclusively

to one predefined category, while multi-label classification treats each label as a

separate binary classification problem, allowing data points to belong to multiple

categories or none (Brask & Gellerman 2021 ; Read et al. 2011).

One early approach, popular in the 1980s, was the rule-based method. This

involved crafting extensive sets of logical rules to classify texts based on keyword

occurrences. For instance, a news article classifier might categorize texts containing

"football," "team," or "score" as "sports." Notably, the Construe system developed by

Hayes and Weinstein (1990) for Reuters news categorization exemplified this approach.

While effective with well-crafted rules, this method suffers from limitations. As

Sebastiani (2002) argues, rule-based systems require both a knowledge engineer and

domain expert to build and maintain the rules, making them susceptible to changes in

categorization needs. Recent research explored combining rule-based and probabilistic

approaches using associative classification rules and a Naive Bayes classifier, achieving

improved accuracy compared to standalone methods (Hadi et al. 2018). However,

further comparisons with more advanced supervised techniques are needed.

Another prevalent approach, topic modelling, utilizes unsupervised learning to

discover latent topics within unlabelled document collections. By clustering documents

based on word occurrences, topic modelling identifies thematic clusters, each defined

by a set of keywords. One such widely used technique is Latent Dirichlet Allocation

(LDA) developed by Blei et al. (2003). LDA finds applications in various areas, such

as uncovering key themes in unlabelled research papers (Jelodar et al. 2019) or

analysing privacy policies (Sarne et al. 2019). While effective for latent topic discovery,

topic modelling becomes less relevant when labelled data is readily available (Chauhan

& Shah 2021).

Finally, the supervised approach leverages labelled data and supervised learning

algorithms to train classifiers for assigning one or more category labels to a document.

Supervised text classification typically involves two steps: data preprocessing and

feature vector extraction, followed by classifier training using the extracted features

Pus
at

Sum
be

r

FTSM

15

(Flores & Verschae 2022). This approach offers a robust and flexible solution for

various text classification tasks.

2.9 TEXT PRE-PROCESSING

Text pre-processing is a critical initial stage in numerous NLP algorithms, significantly

impacting the downstream performance of classification models (Muaad et al. 2022). It

acts as a preparatory phase, transforming raw textual data into a format suitable for

machine learning algorithms. Social media or used generated data contains slangs or

pictograms (emojis/emoticon) as a mean for graphical expression of emotions which

are particularly useful in reviewing effectiveness of product or service (Li et al. 2019).

Therefore, the multi-step text-preprocessing phase lays the foundation for tasks like text

classification, topic modelling, sentiment analysis and text summarization, ultimately

influences model accuracy. Omitting any of these steps can compromise the

effectiveness of these tasks.

The pre-processing pipeline typically involves a series of text cleansing

operations, including:

1. Tokenization: Splitting sentences into individual words or meaningful units

(e.g., n-grams) (Haryadi et al. 2022).

2. Stop-word removal: Eliminating common words that lack semantic content

(e.g., articles, conjunctions) (Piter et al. 2021).

3. Lowercase conversion: Standardizing all letters to lowercase for consistent

representation (Hickman et al. 2022).

4. Lemmatization: Reducing words to their base form (e.g., converting "running"

to "run") (Hickman et al. 2022).

These operations aim to remove noise from the text, such as unnecessary words

and characters (punctuation, special symbols). This not only reduces the dimensionality

of the data, making it more manageable for machine learning algorithms, but also

facilitates effective feature selection (Kowsari et al. 2019) and ultimately enhances

classification accuracy (HaCohen-Kerner et al. 2020)

Pus
at

Sum
be

r

FTSM

16

2.10 CLASSIFICATION ALGORITHMS

While there are many different ML algorithms, in this study, the focus was on 8 main

models as follows.

2.10.1 Multinomial Naive Bayes

Multinomial Naive Bayes (MNB) is a powerful and effective tool for text classification.

It excels in handling data represented as counts or rates, making it ideal for tasks like

sentiment analysis and, movie review classification (Mtetwa et al. 2018). MNB is based

on multinomial distribution, which calculated the probability of observing counts

among multiple categories. This characteristic makes it particularly suited for features

like word counts or frequencies in text classification setup (Mtetwa et al. 2018 ; Rana

& Kolhe 2015).

MNB differs from its parent, Naive Bayes, in its handling of feature

dependencies. While Naive Bayes assumes conditional independence between features,

MNB treats them as independent despite potential underlying relationships facilitating

efficient learning and prediction, especially for large datasets with bag-of-words

features (Rahman & Akter 2019). However, MNB’s assumption of conditional

independence has potential impact on model accuracy, particularly when semantic

relationships between words are crucial. Delving deeper, MNB utilizes the multinomial

distribution to estimate the likelihood of observing specific word counts in each class

(Riego & Villarba 2023) This estimation assumes independence between words within

documents and disregards their context or position. Additionally, MNB assumes equal

prior probabilities for all classes, which can be adjusted based on prior knowledge or

data characteristics (Gawich & Alfonse 2022). To avoid zero probabilities during

calculations, MNB often employs Laplace smoothing, adding a small pseudo-count to

each word occurrence across all classes (Gawich & Alfonse 2022) This technique

ensures smooth probability estimations and avoids numerical instability.

Recent MNB research aims to improve its performance by incorporating

linguistic features like n-grams or TF-IDF to capture semantic relationships and

improve accuracy (Sharifani et al. 2022). Additionally, research on semi-supervised

Pus
at

Sum
be

r

FTSM

17

learning approaches utilizing both labelled and unlabelled data shows promising results

in further enhancing MNB's effectiveness, particularly for large datasets with limited

labelled examples (Abbas et al. 2019 ; Jiang et al. 2016).

2.10.2 Logistic Regression

Logistic regression is a widely used text classification tool, achieving superior results

in diverse applications and fields (Harsha Kadam & Paniskaki 2020). Its effectiveness

is evident in studies like Kotzé et al. (2020), where it achieved an impressive 0.899

accuracy in classifying violent events within WhatsApp messages, surpassing even

SVM classifiers. While linear regression thrives with continuous response variables,

logistic regression shines in the realm of categorical outputs, where standard methods

falter (Cheng & Hüllermeier 2009 ; Wu 2018). Its ability to transform the mean response

and model probabilities via a sigmoid function makes it ideal for tasks like sentiment

analysis, where reviews are categorized as "positive" or "negative" (Gupta 2020).

logistic regression also offers optimization and adaptation, such as identifying

informative data points for labelling, reducing labelling costs and improving

generalization performance (Thangaraj & Sivakami 2018). Additionally, kernel

methods can transform data into higher dimensions, addressing imbalanced rare events

data (Hajibabaee et al. 2021). (Yen et al. 2011). For large datasets with high

dimensionality, logistic regression demonstrates scalability through N-gram smoothing

techniques (Kanish Shah et al. 2020)

However, challenges exist in scenarios with numerous features and limited

observations. Overfitting becomes a concern, as models memorize the training data

instead of generalizing effectively (Zabor et al. 2022). Logistic regression exhibits an

advantage over SVMs due to its ability to control model complexity through techniques

like model selection (Occhipinti et al. 2022) Despite its popularity, ridge logistic

regression faces limitations in large-scale settings, necessitating further exploration.

Combining sparse solutions with ridge regression could address this issue by removing

irrelevant features (Qin & Lou 2019). In the realm of natural language processing,

logistic regression’s close relationship with neural networks further elevates its

significance. Compared to Naive Bayes, a generative classifier, logistic regression

Pus
at

Sum
be

r

FTSM

18

adopts a discriminative approach, providing advantages in interpretability and training

simplicity (Solovyeva & Abdullah 2022). It performs well with linearly separable

datasets but can lead to overfitting in certain scenarios, particularly with high number

of features (Han 2020). This limitation confines its applicability to problems with

discrete functions, as complex relationships are often beyond its reach.

2.10.3 Linear Support Vector Classification

Linear Support Vector Classification (Linear SVC) is a powerful algorithm for large-

scale, multi-class classification tasks. Derived from the classic Support Vector Machine

(SVM) algorithm, it uses linearity to maximize class margins through hyperplanes.

(Gawich, 2022 #138}. This simplification unlocks a multitude of advantages. Firstly,

Linear SVC offers superior scalability compared to its kernel-based SVM counterpart,

particularly for large datasets. Linear computations significantly speed up training and

prediction times (Joshi & Abdelfattah 2021) while also enhancing interpretability by

allowing easier understanding of decision boundaries and feature importance, providing

valuable insights into model behavior.

Beyond these core strengths, Linear SVC unlike standard SVMs offers

flexibility allowing users to customize penalties like "squared_hinge" to enhance

convergence speed and improve robustness to outliers (Gawich & Alfonse 2022).

Furthermore, the ability to customize penalties, such as L2 regularization, empowers

tailoring the model for specific tasks and controlling model complexity, preventing

overfitting (Scott Zhang et al. 2019). For multi-class scenarios, Linear SVC employs

the efficient "one-vs-the-rest" approach, building separate binary classifiers for each

class against all others (Géron 2022). This strategy makes it a versatile tool across

diverse domains, from text classification and image recognition to bioinformatics and

financial forecasting.

However, its effectiveness depends on linear separability between classes. For

complex non-linear relationships, kernel SVMs or other non-linear models might be

more suitable. Additionally, interpretability can still be challenging with high-

dimensional data, but feature importance analysis techniques can provide insight

Pus
at

Sum
be

r

FTSM

19

(Géron 2022). Despite these limitations, Linear SVC stands as a potent and flexible

workhorse for large-scale, multi-class classification problems.

2.10.4 Random Forest

Random Forest (RF), a powerful ensemble method, in machine learning algorithms, that

uses multiple decision trees, to overcome the limitations in individual trees. Unlike

Bagging, Random Forest delves deeper. Both utilize multiple decision trees, but their

approaches diverge when choosing split points within each tree. Bagging simply

samples data with replacement and builds trees using the entire feature set, while

Random Forest randomly selects a smaller subset of features for each split, injecting

diversity into the tree-building process (Géron 2022 ; Joshi & Abdelfattah 2021). This

diversification reduces overfitting, a notorious weakness of decision trees, and

strengthens the overall ensemble. By averaging predictions from diverse trees, Random

Forest achieves exceptional accuracy on various datasets, often exceeding other popular

algorithms like Support Vector Machines (Brask & Gellerman 2021). The ensemble

nature makes Random Forest inherently robust to noise and outliers in the data, further

bolstering its performance (Mesa-Jiménez et al. 2022). Unlike "black-box" models,

Random Forest offers valuable insights into feature importance, allowing data scientists

to understand which features drive the model's predictions (Harsha Kadam & Paniskaki

2020).

Random Forest's versatility shines across numerous domains including

sentiment analysis, spam filtering, classifying textual data based on its content (Gupta

2020) and image categorization in healthcare and autonomous driving applications

(Binkhonain 2021). Identifying anomalous patterns in financial transactions is crucial

for fraud prevention, makes it a valuable tool in this domain (Tufail et al. 2023).

However, ongoing research strives on addressing specific challenges associated with

RF such as selecting optimal hyperparameters (Saad et al. 2021) understanding high-

dimensional data,(Parmar et al. 2023) and exploring alternative ensemble methods that

leverage different principles like boosting. , These challenges require careful

consideration and domain-specific knowledge, as well as novel techniques to

Pus
at

Sum
be

r

FTSM

20

understand the model's decision-making process potentially leading to further

performance improvements in specific tasks (Shawkat et al. 2022).

2.10.5 Decision Tree

Decision trees are widely used supervised learning algorithm in machine learning

(Brask & Gellerman 2021 ; Safavian & Landgrebe 1991)that breaks down complex

decision-making processes into simpler, rule-based steps. They use tree-like structure

to classify data points by tracing a path from the root node down to a leaf, with each

internal node representing a decision based on a specific feature. The feature with the

highest information gain, , is chosen as the parent node, while subsequent features are

assigned to child nodes until reaching the final leaf nodes containing the predicted class

labels (Aghaei et al. 2019) . Decision trees model offer several advantages, including

training and prediction, , for large datasets (Brask & Gellerman 2021), a clear visual

representation of decision rules used for classification, making them easier to

understand and interpret compared to black-box models (Apallius de Vos 2023). As

decision trees are robust to missing data and require minimal data preprocessing, it

makes them a good choice for real-world applications (Apallius de Vos 2023).

However, certain limitations need to be considered. Decision trees can easily

overfit, meaning they memorize the training data but struggle to generalize to unseen

examples (Apallius de Vos 2023 ; Gupta 2020). This can be mitigated through

techniques like pruning or ensemble methods. Simple decision trees may not be able to

capture complex relationships within the data, leading to suboptimal performance for

intricate tasks (Apallius de Vos 2023). Decision trees can be sensitive to noise and

outliers, potentially leading to inaccurate predictions (Feofanov 2021). Various

architectures and splitting criteria exist, with its Gini impurity measure, can be used to

tailor the algorithm to specific problems (Feofanov 2021). Additionally, combining

multiple decision trees through ensemble methods like boosting or bagging can

significantly improve accuracy and reduce overfitting (González et al. 2020).

Pus
at

Sum
be

r

FTSM

21

2.10.6 Extra Tree

Extra Tree Classifier (ETC) is a tree-based ensemble learning algorithm gaining traction

for its effectiveness and simplicity (Barhoom et al. 2022). Similar to its cousin, Random

Forest (RF), ETC combines multiple decision trees for improved accuracy and

robustness. However, unlike RF, ETC boasts distinct characteristics that set it apart.

One key difference lies in the training data used for each tree. While RF utilizes random

bootstrapping, drawing samples with replacement from the original dataset, ETC

employs the entire training set for each individual tree (Darbanian et al. 2020) (Geurts

et al. 2006). This leads to a higher variance in the individual trees compared to RF, but

also potentially reduces bias, contributing to better generalization (Bhati & Rai 2020).

Another distinguishing feature of ETC is its approach to split point selection within the

decision trees. Instead of relying on a specific optimality criterion like the Gini index

used in RF (El Bouchefry & de Souza 2020), ETC randomly selects the best split point

for each feature at each node (Darbanian et al. 2020)This element of randomness further

contributes to the diversity of the trees and helps avoid overfitting (Binkhonain 2021).

Despite these differences, ETC shares some key strengths with RF. Its ensemble

nature makes it robust to noise and outliers in the data (Rustam et al. 2021).

Furthermore, the individual trees are relatively simple and interpretable, allowing for

easier understanding of the model's decision-making process (Bhati & Rai 2020).

Additionally, feature importance can be derived from ETC forests, providing insights

into the most influential features for the classification task (Saad et al. 2021).

2.10.7 Extreme Gradient Boosting

XGBoost, short for Extreme Gradient Boosting, has emerged as a dominant force in the

machine learning landscape (Li et al. 2022). Built upon the foundation of gradient

boosting, it combines multiple weak decision trees into a powerful ensemble, achieving

unparalleled accuracy and efficiency. Its prowess extends to various domains, including

medicine, finance, and even load forecasting. Several key features contribute to

XGBoost's advantage over other models. It prevents overfitting through LASSO (Least

Absolute Shrinkage and Selection Operator) and Ridge penalties, ensuring models

generalize well to unseen data. Missing values are handled intelligently, and different

Pus
at

Sum
be

r

FTSM

22

sparsity patterns are tackled efficiently. The algorithm eliminates the need for manual

cross-validation, simplifying the hyperparameter tuning. Training is significantly

accelerated by leveraging parallel processing, making XGBoost accessible even on

modest hardware (Mesa-Jiménez et al. 2022).

In the realm of medicine, XGBoost shines in diverse tasks like disease diagnosis,

prognosis prediction, and treatment selection (Kufel et al. 2023). Its ability to handle

both structured and unstructured medical data, such as clinical notes and images, makes

it an invaluable tool for healthcare professionals (Inoue et al. 2020 ; Ramakrishnan &

Ganapathy 2022 ; Wang et al. 2022). Under the hood, XGBoost iteratively builds

decision trees, focusing on minimizing the loss function with each step (Occhipinti et

al. 2022). Splitting criteria are based on CART principles, while the least square loss

and logarithmic function are commonly used (Qi 2020). This continuous refinement

leads to a progressively more accurate model. While sharing core principles with

gradient boosting, XGBoost excels through its implementation details. Regularization

techniques effectively control tree complexity, leading to improved performance (Piter

et al. 2021). Hyperparameter tuning plays a crucial role in optimizing the learning

process, and XGBoost offers ample flexibility in this regard (Piter et al. 2021). Its ability

to handle real-world problems, both small and large-scale, with minimal resources is a

testament to its elegance and efficiency (Afifah et al. 2021).

2.10.8 K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a fundamental algorithm in machine learning known

for its simplicity, versatility, and interpretability (Gasparetto et al. 2022). Its core

principle is that similar data points reside in close proximity within a feature space.

KNN meticulously searches the training set for the K nearest neighbours which are the

data points that bear the closest resemblance to the newcomer. This kinship is quantified

using distance metrics like Euclidean distance, which measures the "straight-line"

separation between points. However, the choice of metric isn't a one-size-fits-all affair.

Depending on the data's characteristics, Manhattan, Minkowski, or even Hamming

distances might prove more suitable travel companions for KNN's exploration (Chen et

al. 2020). Once the K nearest neighbours have been identified, KNN then determines

Pus
at

Sum
be

r

FTSM

23

the fate of the newcomer by taking a majority vote to assign the most frequent class

label among the neighbours to the new instance. This democratic approach leverages

the inherent structure of the data, where similar points tend to cluster together, making

it particularly effective for tasks like text classification, where KNN excels in handling

feature-extracted text data like TF-IDF vectors (Brask & Gellerman 2021). KNN can

also tackle regression tasks, where the goal is to predict continuous values. In this

scenario, KNN consults its nearest neighbours once again, but instead of taking a

majority vote, it averages their target variables to arrive at a predicted value for the new

instance (Tufail et al. 2023). This makes KNN a versatile tool, capable of tackling

diverse tasks across various domains.

However, one hurdle in KNN lies in finding the optimal value for K, the number

of neighbours considered. Choosing the right K is akin to striking a delicate balance –

too few neighbours can lead to overfitting, while too many can result in underfitting.

Balancing factors like data size, noise levels, and desired model complexity requires

careful consideration (Rahman & Akter 2019). Another challenge KNN faces is its

computational cost. As the number of data points in the training set grows, so does the

computational burden of calculating distances to all of them during classification. This

"curse of dimensionality" can make KNN less efficient for large datasets, prompting

researchers to explore techniques like dimensionality reduction to mitigate this issue

(Haryadi & Mandala 2019). However, KNN's strengths includes its ease of use,

interpretability, and non-parametric nature, meaning it doesn't require strong

assumptions about the underlying data distribution, making it a valuable tool for

practitioners across various fields. From text classification and sentiment analysis to

recommender systems and anomaly detection, KNN continues to be a relevant and

powerful algorithm in the ever-evolving landscape of machine learning.

2.11 FEATURE EXTRACTORS

Analysing textual data for text classification requires transforming it into a format

suitable for machine learning algorithms. This crucial step, known as feature extraction,

involves identifying and representing the most informative words within the text. Two

main approaches dominate this process: word embedding and term weighting. Methods

Pus
at

Sum
be

r

FTSM

24

like Word2Vec capture the semantic relationships between words by assigning them N-

dimensional vectors. Words with similar meanings have closer vector representations

in this "semantic space"(Pilehvar & Camacho-Collados 2020). This allows the model

to learn and utilize complex relationships between words, improving its ability to

understand the overall sentiment of a text. Techniques like TF-IDF assign weights to

each word in a document, reflecting their importance in distinguishing that document

from other Words that appear frequently within a document but rarely elsewhere are

given higher weights, as they are more likely to be indicative of the document's specific

content. The effectiveness of these weighting schemes is evaluated based on recall (the

proportion of relevant terms extracted) and precision (the proportion of irrelevant terms

excluded (Ahuja et al. 2019).

It's important to distinguish between feature extraction and feature selection.

While feature extraction transforms existing features into a reduced set, feature

selection involves choosing a subset of these features that best represent the data for

analysis (Tiruneh & Fayek 2019). This process helps to reduce redundancy and improve

the efficiency of the machine learning model. The choice of feature extraction technique

can also be guided by the type of vocabulary analysis desired. Closed vocabulary text

mining relies on pre-defined dictionaries to identify relevant words within the text. This

approach is particularly useful in organizational research, where specific constructs and

themes are often well-defined (Hickman et al. 2022).

Garg (2021)utilized two common text-to-vector methods for feature extraction,

bag-of-words and TF-IDF. In addition to these automated techniques, this study also

employed manual feature engineering. This involved extracting specific features from

the review data that were deemed relevant for sentiment analysis but might not have

been captured by the automated methods. These manually extracted features were then

used to create a separate "manual feature" model (Garg 2021). It's important to

remember that proper data preprocessing is essential before employing any feature

extraction technique or building sentiment analysis models (Garg 2021).

Pus
at

Sum
be

r

FTSM

25

2.11.1 Bag Of Words

Despite rapid advancements in Natural Language Processing (NLP), the bag-of-words

(BoW) model remains a cornerstone technique for text classification. Its enduring

appeal stems from its simplicity, efficiency, and effectiveness, particularly for

classifying short texts where word order plays a less crucial role (Juluru et al. 2021). At

its core, BoW represents a document as an unordered collection of words, disregarding

grammatical dependencies and word order. Each word acts as an independent feature,

quantified by its frequency within the document or simply by its presence/absence

(Abubakar et al. 2022) This straightforward approach makes BoW computationally

efficient and readily implementable. BoW shines in its ability to effectively handle short

texts where word order carries less semantic weight. This makes it well-suited for tasks

like sentiment analysis of tweets or classifying short news articles(Lee et al. 2023)..

However, BoW does face limitations. By discarding word order and grammar, it loses

valuable semantic information inherent in the text's structure(Abubakar et al. 2022).

Additionally, frequent words like "the" or "a" can add noise, potentially impacting

classification accuracy (HaCohen-Kerner et al. 2020). Finally, the high dimensionality

of the feature space can lead to sparsity issues, posing challenges for certain machine

learning algorithms (Lee et al. 2023). To address these limitations, several strategies

can be employed. Preprocessing steps like tokenization, stop word removal, and

stemming/lemmatization can significantly improve BoW's performance (HaCohen-

Kerner et al. 2020)

2.11.2 Term Frequency-Inverse Document Frequency

The quest for accurate and efficient information retrieval remains a cornerstone of

various computational linguistics tasks. Among the plethora of techniques deployed,

Term Frequency-Inverse Document Frequency (TF-IDF) stands out as a versatile and

robust approach for quantifying word relevance in documents. This review delves into

the intricate workings of TF-IDF, exploring its theoretical underpinnings, applications,

and challenges through the lens of relevant literature. Brask and Gellerman (2021)

highlighted the inherent tension in text classification between recall (finding all relevant

documents) and precision (retrieving only relevant documents). Salton and Buckley

(1988) argued that term weighting schemes like TF-IDF play a crucial role in striking

Pus
at

Sum
be

r

FTSM

26

this delicate balance. TF-IDF achieves this by considering both the frequency of a word

within a document (TF) and its distribution across the entire corpus (IDF). Terms that

appear frequently within a document are deemed more important for its content (Qi

2020). utilizes this principle in hotel review classification, where words like "clean"

or "comfortable" carry higher weights as they are prevalent in positive reviews.

However, a common word like "the" might appear frequently across many documents,

diluting its significance for any specific content. This is where IDF comes in. IDF

penalizes terms that occur in many documents, promoting specificity and discriminative

power (Gupta 2020 ; Wu et al. 2008).

The versatility of TF-IDF extends beyond the realm of text classification.

Harsha Kadam and Paniskaki (2020) leverage it for multi-label email classification,

while Haryadi et al. (2022) employed it to classify drug effectiveness based on patient

reviews. It finds applications in sentiment analysis as well, with Parmar et al. (2023)

employing it for drug quality classification based on review sentiment. Despite its

numerous strengths, TF-IDF is not without its limitations. Computational

considerations arise when dealing with large datasets, as calculating TF-IDF weights

can be resource-intensive (Gupta 2020). Additionally, tuning the TF-IDF parameters

for optimal performance requires careful calibration depending on the specific task and

data characteristics (Brask & Gellerman 2021). Furthermore, handling stop words

effectively is crucial, as their high frequency can skew the weightings and impact

accuracy (Haque et al. 2023).

2.12 CONFUSION MATRIX

Confusion matrix is a tabular representation of a model's performance, visualizing

correct and incorrect predictions for each class (Sami et al. 2021)

The key elements in a confusion matrix are:

1. True Positives (TP): Correctly predicted positives

2. True Negatives (TN): Correctly predicted negatives

3. False Positives (FP): Incorrectly predicted positives

4. False Negatives (FN): Incorrectly predicted negatives (Zope et al. 2022)

Pus
at

Sum
be

r

FTSM

27

2.13 PERFORMANCE METRICS

Accuracy is the most intuitive metric, measuring the percentage of correctly predicted

observations (Joshi & Abdelfattah 2021). However, it can be misleading for imbalanced

datasets where one class dominates (Mtetwa et al. 2018). Considering the significant

class imbalance, we chose not to rely on accuracy for model evaluation.

�������� = (�� + ��) �����⁄ ������������

(Sami et al. 2021)

Precision (also called positive predictive value) measures the proportion of true

positives among predicted positives (Zope et al. 2022).It emphasizes how many of the

predicted positives are actually correct.

��������� = �� ∕ (�� + ��)

(Zope et al. 2022)

Recall (also called sensitivity) measures the proportion of true positives

correctly identified among all actual positives (Sami et al. 2021). It focuses on how

many of the actual positives were correctly captured.

������ = �� ∕ (�� + ��)

(Sami et al. 2021)

F1-score is the harmonic mean of precision and recall, balancing both measures

to provide a more robust evaluation of performance, especially with imbalanced data

(Joshi & Abdelfattah 2021).It's often preferred in scenarios where both precision and

recall are important, and where the cost of false positives and false negatives are

different (Mtetwa et al. 2018). Therefore, for the purpose of this study, F1-score is the

preferred performance metric to assess the performance of the machine learning models.

�1 ����� = 2 × (��������� × ������)

(Joshi & Abdelfattah 2021)

Time – the computational speed of each algorithm is also measured in seconds

to assess runtime efficiency of the models.

Pus
at

Sum
be

r

FTSM

28

2.14 RELATED WORK

Abbas et al. (2019) reported MNB achieved good performance for sentiment analysis,

highlighting its efficiency for classifying short text with categorical features while Hadi

et al. (2018) reported combining MNB with rule-based classification improved

accuracy in some cases, suggesting potential for hybrid approaches. Meanwhile Kibriya

et al. (2005) reported that MNB provided competitive performance compared to other

algorithms, showcasing its effectiveness for general text classification. Generally, these

past studies highlighted the MNB as an efficient and interpretable model that was robust

to feature scaling and handles categorical features well. It also highlighted the

challenges associated with MNB, such as its characteristic where it assumes

independence of features (may not hold for complex data), is sensitive to priors, and is

limited to categorical features.

Joshi and Abdelfattah (2021) reported that the linear SVC outperformed other

models for multi-class text classification of drug reviews, demonstrating its versatility

and accuracy while Mesa-Jiménez et al. (2022) reported that XGB proved robust to

noise and outliers in building management system text data. Joshi and Abdelfattah

(2021) compared six machine learning models for classifying online drug reviews by

medical condition. Decision trees achieved an accuracy of 78.6%, lower than Linear

Support Vector Machines (84.2%) but higher than Multinomial Naïve Bayes (75.3%).

Mtetwa et al. (2018) studied the effects of feature extraction techniques in

machine learning models for movie review classifications. Different combinations of

text representation methods and machine learning classifiers were evaluated for their

performance (Table 2.1). The study found that using tf-idf with a Support Vector

Machine (SVM) and bigrams with a Multinomial Naive Bayes (MNB) classifier

produced the best results, achieving a score of 0.88 besides also highlighting that the

success of a good classifier depended on the feature extraction technique and the

machine learning model (Mtetwa et al. 2018). Mtetwa et al. (2018) found RF achieved

high accuracy for movie review classification, highlighting its effectiveness for

sentiment analysis. RF generally was highly accurate, robust to noise and outliers,

handles mixed data types, and provided feature importance insights but it can be

Pus
at

Sum
be

r

FTSM

29

computationally expensive, less interpretable than MNB, and was prone to overfitting

if not tuned properly.

Anvekar (2020) investigated classification of online patient reviews based on

effectiveness (drugs.com and WebMD.com dataset) using machine learning techniques

such as RF, KNN, SVM (Support Vector Machine) and XGBoost classifier. The feature

extraction techniques employed were Count Vectorizer (BOW) and TF-IDF with N-

gram approach (unigram and bigram). In this study (Anvekar 2020), XGBoost

outperformed other models when paired with unigram model and tf-idf vectorization

achieving an F1-score of 0.79.

Kwon et al. (2018) used the Binary BOW, Count BOW and tf-idf feature vectors

to compare the performance of classifiers in malware detection. In this study, DT, KNN,

MLP, MNB and SVM were used as classifiers. Kwon et al. (2018) recognized both the

Multilayer Perceptron (MLP) and K-Nearest Neighbours (KNN) algorithms as top

classifiers for this dataset. Their consistent performance in terms of AUC score and

accuracy stood out regardless of data imbalance and diverse feature extraction

techniques (Binary BOW, Count BOW, and TF-IDF).

Bolukbasi et al. (2016) reported that Linear SVC showed promise in reducing

bias in word embeddings for sentiment analysis while Novakovic and Veljovic (2011)

observed that it performed well for medical diagnosis classification, suggesting the

potential of Linear SVC for binary tasks with structured data. A study by Solovyeva

and Abdullah (2022) found that Linear SVC achieved good accuracy on various text

classification tasks, showcasing its versatility. These studies found that Linear SVC was

efficient for linear data, it was highly interpretable, and handled binary classification

well. Its performance however can degrade with complex non-linear data, and it may

require feature scaling, making it less flexible than Random Forest.

Extreme Gradient Boosting (XGBoost) has emerged as a powerful and versatile

algorithm for text classification tasks. Its effectiveness lies in its ability to handle

complex relationships between features, leading to highly accurate and interpretable

models. Qi (2020) employed XGBoost to classify theft crime data based on textual

Pus
at

Sum
be

r

FTSM

30

descriptions. They achieved an accuracy of 93.8%, outperforming other algorithms like

K-Nearest Neighbours, Naïve Bayes, and Support Vector Machines. This suggested

XGBoost's capability in handling intricate textual patterns for crime classification.

Meanwhile, Hendrawan et al. (2022) compared XGBoost with Naïve Bayes for

sentiment classification of online product reviews. They found XGBoost to achieve

superior accuracy (F1-score: 0.941) compared to Naïve Bayes (F1-score: 0.915)

highlighting XGBoost's effectiveness in capturing sentiment nuances within textual

data. Piter et al. (2021) utilized XGBoost for multi-label classification of scientific

conference activity information text. They obtained an average hamming score of

79.52% and an F1 score of 85.88%, demonstrating XGBoost's proficiency in handling

multi-faceted textual data with diverse labels while Haumahu et al. (2021) implemented

XGBoost for classifying fake news articles in Indonesian. They achieved an accuracy

of 89% with a precision of 90% and recall of 80%. These findings collectively paint a

promising picture of XGBoost's efficacy in text classification. XGBoost consistently

delivered high accuracy across various text classification tasks, outperforming other

algorithms in several cases. The algorithm adapted well to different text data types,

including crime descriptions, product reviews, conference information, and news

articles. XGBoost effectively handled tasks with multiple labels associated with each

text data point, as demonstrated in the scientific conference activity classification.

However, training XGBoost models can be computationally expensive compared to

simpler algorithms like Naïve Bayes and XGBoost required careful hyperparameter

tuning to achieve optimal performance, which can be challenging for non-experts.

Past studies reported that while decision trees can be effective for text

classification, their performance can be improved by using techniques like feature

selection, pre-processing, and ensemble methods. Decision trees are often used as a

baseline model for comparison with other algorithms due to their simplicity and

interpretability. The accuracy of decision trees for text classification varied depending

on the dataset and task. DT was able achieve competitive results, especially when

combined with other methods. Rahman and Akter (2019) compared decision trees, K-

Nearest Neighbours, and Multinomial Naïve Bayes for topic classification on news

articles. Decision trees achieved an accuracy of 88.4%, lower than Multinomial Naïve

Bayes (91.8%) but higher than K-Nearest Neighbours (83.3%) while Thangaraj and

Pus
at

Sum
be

r

FTSM

31

Sivakami (2018) discussed decision trees in the context of AI for text classification.

They mention decision trees' popularity due to their simplicity and interpretability.

A Covid-19 case study by Almomany et al. (2022) proposed an optimized KNN

classification algorithm using the DCT-KNN approach on the Intel FPGA platform. The

study found that this approach significantly improves the execution time of KNN

classification compared to traditional CPU-based implementations, achieving 44 times

faster execution on the Intel De5a-net Arria-10 device. While Wen et al. (2022)

proposed a weighted ML-KNN approach that used rough sets to identify and address

the uncertainty in samples. This approach was found to be effective in multi-label

classification tasks, achieving improvements in F1 score compared to several state-of-

the-art multi-label classification methods. Zhao et al. (2023) meanwhile explored the

use of KNN in conjunction with prompt learning for biomedical document relation

extraction. The study found that this approach can improve the learning of document

semantic information and achieve improvements in relation F1 score compared to other

methods. Huang et al. (2023) investigated the use of ML-KNN for multi-label

classification of social media users. The study found that this approach can effectively

capture the multi-faceted nature of social media users and outperform existing single-

label classification methods. Adhikary and Banerjee (2023) introduced a novel

distributed KNN algorithm called Distributed Nearest Hash (DNH) that utilized hash

maps and primary key clustering to achieve near-real-time scalability and fast prediction

times. The study found that DNH can be 25% faster than state-of-the-art distributed

KNN algorithms.

Solovyeva and Abdullah (2022) explored various machine learning algorithms

for text classification, including logistic regression. They found that logistic regression

performs well on smaller datasets but can struggle with complex, non-linear data. The

study by Hassan et al. (2022) compared the performance of different machine learning

algorithms, including logistic regression, on two text classification tasks and found that

logistic regression achieved competitive accuracy on both tasks, outperforming other

models in some cases. Meanwhile, Mesa-Jiménez et al. (2022) investigated the use of

machine learning for classifying sensor points in building management systems,

comparing several algorithms, including logistic regression, and found that XGBoost

Pus
at

Sum
be

r

FTSM

32

achieved the best performance. However, logistic regression still offered a viable option

with good accuracy and efficiency. Overall, these studies suggest that logistic regression

is a valuable tool for text classification, particularly for smaller datasets or when

computational resources are limited. While it may not always be the most powerful

algorithm, it offers a good balance of accuracy, efficiency, and interpretability. Logistic

regression is often used as a baseline model for comparison with other, more complex

algorithms. Its simplicity and interpretability make it a good choice for understanding

the relationships between features and text categories. Logistic regression can be

effective for tasks where the data is well-structured and the relationships between

features and categories are linear.

Saad et al. (2021) used Extra Trees as one of five machine learning models to

classify sentiment in drug reviews, reporting that while Extra Trees performed well, it

was not as well as the best-performing model, Logistic Regression with TF-IDF

features. Umer et al. (2022) used Extra Trees as part of an ensemble model to classify

sentiment in COVID-19 tweets and found that the ensemble model performed better

than Extra Trees alone, and that Extra Trees with TF-IDF features achieved the best

accuracy among the individual models used in the ensemble. Overall, these findings

suggest that Extra Trees can be a good option for text classification, but it may not

always be the best-performing model. It can be effective when used in conjunction with

other models in an ensemble, and its performance can be improved by using TF-IDF

features. Uçar et al. (2020) highlighted the critical role of the sampling method in

determining the success of machine learning models, particularly during the training

and testing phases. The study also mentioned that training size less than 50% is not

favourable as it has negative implications on the results. A summary of related reviewed

are as in Table 2.1 below.

In this chapter, the various machines learning approaches and components were

reviewed. Past studies that used the machine learning models and techniques employed

in the current study were reviewed and discussed to give a background knowledge of

machine learning models in drug review data. In the next chapter, the methodology

employed for the classification of conditions for the drug review data are stated in a

sequence of process.

Pus
at

Sum
be

r

FTSM

33

Table 2.1 Summary of Related Work

No Past Studies Task Dataset Method Findings / Conclusion Gaps

1 Joshi and
Abdelfattah
(2021)

Multi-class Text
Classification Using
Machine Learning
Models for Online
Drug Reviews

Drugs.com &
Druglib.com

 MNB, DT, RF, ET, LR,
Linear SVC

 random split 80/20
 TF-IDF
 hyperparameter tuning

(gridsearch, randomized
search)

 F1-score, time

 F1-score Linear SVC -
0.8825 (highest)

 Time for Linear SVC and
MNB was the shortest (less
than a minute)

 Others 51, 353,380,490 and
1003 seconds (LR, RF, DT,
ET)

 Text preprocessing –
beautiful soup

 Only six machine
machine learning
algorithms
considered

 Effect of split was
not considered

 Effect of feature
extractors was not
considered

2 Uddin et al.
(2022)

Drug Sentiment
Analysis using
Machine Learning

drug review
dataset

 Binary classification
(effective/not effective)

 NB, RF, SVC, MLP
 Multiclass classification –

linear SVC (highly,
considerable, moderately,
marginally, ineffective)

 Sampling method unknown

 Accuracy % RF (94.06) MLP
(86.82), SVC (88.63), NB
(88.57)

 Multiclass classification,
linear SVC showed
promising result

 Unclear sampling
methods and feature
extraction methods

 Only four ML
methods considered

to be continued…

Pus
at

Sum
be

r

FTSM

34

…continuation

3 Mtetwa et al.
(2018)

Feature Extraction
and Classification of
Movie Reviews

 Stanford
University’s
ACL IMDB
movie review
dataset

 Binary sentiment classification
 SVM, MNB, RF
 TF-IDF, Bigrams, counter

vector (BOW),
 Accuracy, F1-score, precision,

recall
 Sampling method was not

stated

 MNB + bigrams achieved
highest F1-score

 Effect of other
machine learning
algorithms were not
experimented

 Other splits were not
considered

4 Qi (2020) The Text
Classification of
Theft Crime Based on
TF-IDF and XGBoost
Model

theft crime data XGB, KNN, NB, SVM,
GBDT , multilabel

 TF-IDF
 accuracy, recall, F1-score
 Sampling method – 80/20 split

 XGBoost -best training
model

 F1-score -96.6%
 lowest SVM -80.8%

 Only five classifiers
and one feature
extractor considered

5 Bangyal et al.
(2021)

Detection of Fake
News Text
Classification on
COVID-19 Using
Deep Learning
Approaches

COVID Fake
News Datase

 SVM, LR, NB,
 Adaboost, K-NN,
 DT, RF, MLP,
 CNN, RNN,
 LSTM, GRU
 TF-IDF,
 80/20 split

 Bi-LSTM and CNN perform
better than other classifiers
(accuracy -97%, execution
time, nonsensitive to outliers,
reduction of noise)

 ML models with highest
accuracy 97% are (K-NN,
MLP, RF).

 Effect of other
feature extractors
were not considered

 Effect of other
sampling methods
were not considered

to be continued…

Pus
at

Sum
be

r

FTSM

35

…continuation

6 (Garg 2021) Drug
Recommendation
System based on
Sentiment Analysis of
Drug Reviews using
Machine Learning

Drug Review
Dataset from
(Drugs.com)

 LR, MNB, Stochastic
Gradient descent, Linear SVC,
Perceptron, Ridge Classifier
experimented with TF-IDF
and BOW

 DT, RF, LGBM,CatBoost
Classifier on word2vec

 random split 75/25
 SMOTE
 precision, Recall, F1-score,

accuracy

 Linear SVC with TF-IDF
outperforms all other
classifiers -93% accuracy.

 Effect of other
sampling methods
were not considered

 N-gram feature
extractor were not
considered

7 Ling (2023) Bio+ Clinical BERT,
BERT Base, and
CNN Performance
Comparison for
Predicting Drug-
Review Satisfaction.

UCI ML Drug
Review dataset

 classifying patients’ drug
review sentiment

 Classifier: BERT, Bio-Clinical
BERT, CNN, word2vec

 Sampling method not
mentioned

 Parameter – Precision, Recall,
F1-score

 F1-score Bio + Clinical
BERT is 0.81

 Conventional
classifiers were not
considered

 Only one feature
extractor
experimented

8 Piter et al.
(2021)

multi-label
classification of
scientific conference
activity information
text

scientific
conference
activities on the
internet.

 XGB
 hyperparameter test analysis
 TF-IDF, word2vec,
 cross validation
 precision, recall hamming

score
 Multi-label classification

 F1 score of 85.88%,
 demonstrating XGBoost's

proficiency in handling
multi-faceted textual data
with diverse labels

 Only one classifier
was selected

 Only 2 types of
classifiers selected

 Effect of random
split sampling were
not considered

to be continued…

Pus
at

Sum
be

r

FTSM

36

…continuation
9 Parmar et al.

(2023)
Drug Quality
Classification Using
Sentiment Analysis of
Drug Reviews

Drug Review
dataset from
(Drugs.com)

 NB, LR, perceptron, ridge
classifier, DT, RF (only ML
classsification method with
quick prediction and training
cycle were selected)

 BOW, TF-IDF,
Countvectorizer,

 K-fold cross splits,
 SMOTE

 Selected ML: MNB, LR,
DTC, RFC

 Best F1-score- RF:
 094(TF-IDF),

0.93(countvectorizer)
 worst F1-score: MNB:
 0.79 (TF-IDF), 0.78

(countvectorizer)

 Only four classifiers
were selected

 Effect of random
split sampling
method were not
experimented

10 Hendrawan et
al. (2022)

Comparison of Naïve
Bayes Algorithm and
XGBoost on Local
Product Review Text
Classification

local product
review

 XGB, NB
 word2vec, TF-IDF,
 sampling 80/20

 word2vec + XGBoost F1-
score 0.941,

 TF-IDF +XGBoost (0.940).
 NB+TF-IDF (0.9),

NB+word2vec (0.9).
 Xgboost classify unbalanced

data better than NB

 Only 2 classifiers and
2 types of feature
vectors considered

 Other sampling
methods were not
experimened

11 (Haumahu et al.
2021)

Classifying fake news
articles in Indonesian

indonesian news
websites

 XGB
 TF-IDF
 cross validation
 precision, recall, F1-score,

accuracy,

 XGB-accuracy and F1-score
92%

 Only one classifier
and one feature
extractor were
selected

 No random sampling
method studied

to be continued…

Pus
at

Sum
be

r

FTSM

37

…continuation
12 Rahman and

Akter (2019)
Topic Classification
from Text Using
Decision Tree, K-NN
and Multinomial
Naïve Bayes

Amazon's
product review
corpus

 Decision trees, KNearest
Neighbours, and Multinomial
Naïve Bayes

 75/25,
 multiclass
 tf-idf, count feature

 F1-score (Tf-IDF):
 DT - 0.79,
 MNB - 0.918
 KNN - 0.826
 F1-Score (count-feature)
 DT: 0.798
 K-NN: 0.590
 NB: 0.905

 Only four classifiers
studied

 Only one sampling
method was
considered

 Only 2 types of
feature extractor
considered

13 Abbas et al.
(2019)

Multinomial Naive
Bayes Classification
Model for Sentiment
Analysis

dataset of movie
reviews

 MNB, TF-IDF Accuracy - 90% sampling methods
are not stated

 only one classifier
and feature
extraction used

14 Mesa-Jiménez
et al. (2022)

Machine learning for
text classification in
building management
systems

Building
Management
Systems data

 multi-class
 LogReg, RF, XGB, MNB,

Linear SVC
 bag-of-words

 XGBoost performs better
than the other four except
MNB which shows slightly
worse results.

 sampling methods
were not stated

 only one feature
technique used

15 Novakovic and
Veljovic (2011)

C-Support Vector
Classification:
Selection of Kernel
and Parameters in
Medical Diagnosis

Nine datasets
from UCI
repository
database used to
compare results
of classification
with C-SVC and
different kernels
and parameters
in medical
diagnosis.

 Classifier - C-Support Vector
Classifier

 after optimization of
parameters, resuts proved
that classification accuracy is
consistent for all kernels.

 single class
classification

to be continued…

Pus
at

Sum
be

r

FTSM

38

…continuation
16 Solovyeva and

Abdullah
(2022)

Comparison of
Different Machine
Learning Approaches
to Text Classification

comparative
analysis of the
main machine
learning
algorithms to
classify texts

 Comparative analysis of:
 Word tokenization vs word

embedding
 NB, LR, Linear SVC, Deep

Neural Networks

 Naive Bayes algorithm
performs even with limited
training datasets

 Logistic regression can
classify unknown text
instantly and perform well
when the dataset is linearly
separable. sets. However, the
assumption of linearity
between It has good accuracy
for many textual data the
dependent and independent
variables is a limitation of
the algorithm

 Support vector machine is
stable and efficient in spaces
with high machine approach
is not very effective for huge
datasets.

 Deep neural networks
efficiently solve many
problems like classification,
regression, function
approximation, clustering,
and others and deal with
different kinds of data. But
they demand a significant
load of data to achieve
enhanced results than the
previous methods.

 Comparative analysis
done only on 4 ML
models

 No comparative
model on sampling
methods

 N-gram method was
not analysed

 No data on
accuracy/F1-score
for comparative
analysis done

to be continued…

Pus
at

Sum
be

r

FTSM

39

…continuation

17 Hassan et al.

(2022)
Analytics of machine
learning-based
algorithms for text
classification

 IMDB and
SPAM dataset

 comparative analysis of text
classification

 Support Vector Machine
(SVM), k-Nearest Neighbour
(k-NN), Logistic Regression
(LR), Multinomial Naïve
Bayes (MNB), and Random
Forest (RF)

 Tf-IDF, Bag-of-words
 accuracy, precision, recall and

f1- score.

 k-NN model outperforms the
other models in the Spam
dataset with an accuracy of
98.5%.

 LR model surpasses the other
models in the IMDB dataset
with an accuracy of 85.8%

 TextBlob tends to show
better results for annotation
drug reviews

 Drug review dataset
was not analysed

 sampling method
was not stated

18 Saad et al.
(2021)

Determining the
Efficiency of Drugs
Under Special
Conditions from
Users’ Reviews on
Healthcare Web
Forums

sentiment
analysis on drug
reviews

 learning-based and lexicon-
based methods of sentiment
analysis

 three sentiment lexicons
including AFFIN, TextBlob,
and VADER.

 three feature engineering
approaches TF, TF-IDF, and
TF U TF-IDF

 logistic regression (LR),
random forest (RF), extra tree
classifier (ET), AdaBoost
classifier (AB), and multilayer
perceptron (MP)

 hyperparameter setting done
 accuracy, precision, recall and

f1- score.

 MLP and LR showed good
performance when trained on
TF-IDF and TF U TF-IDF
with TextBlob sentiments

 paper focuses on
sentiment analysis of
drug review dataset

 only 5 ML models
used

 sampling method
was not stated

to be continued…

Pus
at

Sum
be

r

FTSM

40

…continuation
19 Umer et al.

(2022)

ETCNN: Extra Tree
and Convolutional
Neural Network-
based Ensemble
Model for COVID-19
Tweets Sentiment
Classification

 COVID-19
tweet dataset
from IEEE
dataport

Random Forest (RF), Extra Tree
(ET), Gradient Boosting Machine
(GBM), Logistic Regression (LR),
Naive Bayes (NB), Stochastic
Gradient (SG) and Voting
Classifier (VC), ET-CNN
(combines ET and CNN)
TextBlob, VADER
Tf-IDF, Word2vec
hyperparameter setting done

ET model shows the best
performance among the machine
learning models when TF-IDF
features are used.

sampling method was not
stated
no multiclass text
classification

Pus
at

Sum
be

r

FTSM

CHAPTER III

METHODOLOGY

3.1 INTRODUCTION

The use of eight different machine learning models and four feature extraction

techniques were employed to classify top ten common disease conditions for the drug

review data. This study's research methodology are further explained following the

steps as shown in Figure 3.1.

Figure 3.1 Flowchart of drug review classification using machine learning models

3.2 DRUG REVIEW DATASET

The two drug review datasets namely Drugs.com (Surya Kallumadi 2018) and

Druglib.com (Surya Kallumadi 2018) were obtained from UCI Machine Learning

Repository. The dataset includes reviews of different medications for various medical

Pus
at

Sum
be

r

FTSM

42

conditions, along with user ratings reflecting overall satisfaction and perceived

effectiveness. The dataset was chosen as it contains information on side-effect profile

and feedback on effectiveness of a drug which was like an adverse drug reaction report.

This dataset has been used by other studies as reviewed in Table 2.1. The dataset

comprised of 219,206 patient reviews were obtained from UCI Machine Learning

Repository, with 215,063 sourced from Drugs.com and the remaining 4,143 reviews

obtained from Druglib.com. The drug review data were obtained by crawling online

pharmaceutical review sites. The raw sample data of both datasets (druglib.com and

drugs.com) are shown in Figure 3.3 and 3.2. Both datasets contained the same

conditions. The list of attributes with its corresponding data type are shown in Tables

3.1 and 3.2.

Table 3.1 List of attributes with their types and descriptions for drug review
(druglib.com) dataset

Attributes name Type Attribute description

Unnamed: 0 numerical Unique number assigned for each review

urlDrugname categorical Name of drug
Excluded from classification task

condition categorical Name of condition
Class attribute

benefitsReview text Patient review on benefits
Excluded from classification task

sideEffectsReview text Patient review on side-effects
Excluded from classification task

commentsReview text Overall patient comment (includes benefit and side-effects)

rating numerical 10-star patient rating (1-10)
Excluded from classification task

sideEffects categorical 5 step side effect rating
(Mild side effects, no side effects, moderate side effects,

severe side effects, extremely severe side effects)
Excluded from classification task

to be continued…

…continuation

effectiveness categorical 5 step effectiveness rating
(Highly effective, considerably effective, moderately

effective, ineffective, marginally effective)
Excluded from classification task

Pus
at

Sum
be

r

FTSM

43

Figure 3.2 Raw sample data for Druglib.com

Table 3.2 List of attributes with their types and descriptions for drug
review(drugs.com) dataset

Attributes name Type Attribute description
uniqueID string Unique ID for each review

drugName categorical Name of drug
Excluded from classification

task
condition categorical Name of condition

Class attribute
review text Patient review

Excluded from classification
task

rating numerical 10-star patient rating (1-10)
Excluded from classification

task
date date Date of review entry

Excluded from classification
task

usefulCount numerical Number of users who found
the review useful.

Excluded from classification
task

Figure 3.3 Raw data sample for drugs.com

Pus
at

Sum
be

r

FTSM

44

3.3 DATA CLEANING

Data cleaning is the process of removing noise and inconsistency to improve the quality

of data. In the following section, description on data cleaning for both datasets will be

elaborated further. Figure 3.4 shows the information of attributes and number of entries

for each dataset. From the figure, we can see some discrepancies in the numbers as

highlighted in the image, therefore data cleaning was performed to enhance the data

quality.

The discrepancies in the data were as follows:

1. Df_lib dataset has a range of 4143 entries, however the three attributes do not

tally with this range and they are:

a. condition with 4142 entries.

b. sideEffectsReview with 4141 entries

c. commentsReview with 4135 entries

2. Df_com dataset has a range of 215063 entries, however one of the attributes,

which is, ‘condition’ has 213869 entries.

Figure 3.4 Count of entries for each attribute in drug.lib and drug.com datasets before
data cleaning

Pus
at

Sum
be

r

FTSM

45

3.3.1 Remove duplicates

Both the dataset was checked for duplicate entries using the unique number assigned

for each entry (Unnamed: 0 for druglib.com and uniqueID for drug.com). The output of

results shows that there no duplicate values in either dataset.

3.3.2 Remove null values

The drug review dataset was inspected in python Colab tool to detect missing values

and the result shows that there was missing values. Since the missing values comprises

less than 0.5% (Figure 3.5) of the total data size, it was therefore removed from the data

frame.

Pus
at

Sum
be

r

FTSM

46

Figure 3.5 Output of results for missing values in drug.lib and drug.com datasets

Figure 3.6 Count of entries for each attribute in drug.lib and drug.com datasets after
data cleaning

Based on the result output in Figure 3.6, there are no null entries (missing

values) in the data frame after data cleaning. Each column has a “non-null count” equal

to the total number of entries in the data frames. This indicates that all the values in each

column are non-null, and there are no missing values in the dataset. The absence of null

entries and duplicates means that the dataset is complete with values for each column,

making it easier to work and analyse with.

3.3.3 Remove attribute

Given that the classification of conditions relies on reviews, additional columns from

both datasets were excluded before merging them. Figure 3.7 shows the description of

attributes selected in both datasets.

Pus
at

Sum
be

r

FTSM

47

Figure 3.7 Output of results of
both dataset after data cleaning

Both these data sets (druglib.com and drug.com) were then combined for the

purpose of this study and the description of the data frame is shown in Figure 3.8.

Figure 3.8 Description of cleaned drug review dataset comprising of all medical
conditions

3.4 EXPLORATORY DATA ANALYSIS

Exploring data is a crucial phase in comprehending and preparing data. This step is

essential for gaining a complete understanding of the data's characteristics and for

identifying any potential data quality issues. Since the classification on conditions are

Pus
at

Sum
be

r

FTSM

48

based on reviews, the exploratory data analysis will be focused on attributes “condition”

and “review”.

Originally, the dataset encompasses reviews of 2720 distinct medical

conditions. However, for the experiment, reviews associated with the ten most prevalent

medical conditions were isolated to train and test the chosen models. The ten most

common medical conditions include:

1. Birth Control

2. Depression

3. Pain

4. Anxiety

5. Acne

6. Bipolar disorder

7. Insomnia

8. Weight Loss

9. Obesity

10. ADHD

Figure 3.9, shows the description of data frame of drug review dataset after

cleaning and selection of top 10 medical conditions. The final data frame size of the

drug review dataset is 98, 723.

Pus
at

Sum
be

r

FTSM

49

Figure 3.9 Selected top 10 conditions and their corresponding counts.

Figure 3.10 Distribution of conditions (classes) in the dataset

The following section will describe the overall distribution of review length

(number of characters in the review column) for the selected top 10 medical conditions

(Figure 3.10). Figure 3.11 shows the statistics of review length, whereas Figures 3.12

and 3.13 shows the distribution of the review lengths. The total count of reviews in the

data frame is 98,723 which is the equal number of total number of entries in the data

frame. The average length on the review is about 492.94 characters. The standard

deviation is 231.68 which indicates that the review lengths are more spread out from

the mean. It shows that the length of review is more dispersed, and there is greater

variability in the dataset. The shortest review in the dataset is 3 whereas longest review

is 5723. Most of the reviews (50%) fall between 308 and 717 characters. The outliers

as shown in Figure 3.12 were not removed as the aim of the study is to experiment on

the effects of different features.

Pus
at

Sum
be

r

FTSM

50

Figure 3.11 Output of review length statistic in final data frame

Figure 3.12 Distribution of review lengths shown in box plot chart

Figure 3.13 Distribution of review lengths in data frame

Pus
at

Sum
be

r

FTSM

51

3.5 TEXT PRE-PROCESSING

In the text pre-processing stage, the unstructured data were converted to structured data.

This is an important step as it involves the refinement of input data, which among others

include activities such as eliminating unwanted punctuations, removal of stop words,

lower casing of the data, removal of links and symbols, and returning the words to its

roots by lemmatizing. This is important as data with unwanted links and symbols could

block the analysis process and negatively affect the model's accuracy. This stage is

crucial in order to maximise the output required from vectorization. In this study,

Phyton’s “BeautifulSoup” library from the ‘bs4’ module and the ‘re’ regular expression

library was employed to undertake the text pre-processing task. (Figure 3.14).

The overall pre-processing stage was sub-divided into 4 separate sub-processes.

In the first sub-processing stage (tokenization) whole sentences within the dataset were

deconstructed into individual words. This was followed by the Stop word and

punctuation removal sub-process where unimportant non-alphabetical characters were

removed. The next sub-process is the lemmatization process where words with identical

roots were identified. This step allowed words with different inflections and variations,

but with similar roots to be identified and returned to the common base form. Finally,

the individual words that have been cleaned and returned to its base form was

reconstructed back into sentences in the detokenization pre-processing stage (Figure

3.15).

Pus
at

Sum
be

r

FTSM

52

Figure 3.14 Text preprocessing done to achieve a clean review data

Figure 3.15 Output of review before and after text preprocessing

Pus
at

Sum
be

r

FTSM

53

In order to give a better insight into the cleaned review, word cloud for each

condition was generated. Word cloud is an excellent visualization tool to view the

frequency of common word used in a review. The size of a word is directly

proportionate to the number of times a word appears in a comment. Figures 3.16 -3.25

gives an illustration of commonly used words for each condition or class by reviewers.

Figure 3.16 Word cloud of birth control

Figure 3.17 Word cloud of depression

Pus
at

Sum
be

r

FTSM

54

Figure 3.18 Word cloud of pain

Figure 3.19 Word cloud of anxiety

Figure 3.20 Word cloud of acne

Pus
at

Sum
be

r

FTSM

55

Figure 3.21 Word cloud of bipolar disorder

Figure 3.22 Word cloud of insomnia

Pus
at

Sum
be

r

FTSM

56

Figure 3.23 Word cloud of weight loss

Pus
at

Sum
be

r

FTSM

57

Figure 3.24 Word cloud of obesity

Figure 3.25 Word cloud of ADHD

Pus
at

Sum
be

r

FTSM

58

3.6 TRAIN/TEST SPLITS

Different split techniques were employed in the machine learning model to determine

any possible effects on the performance metrics. All machine learning models used for

the classification task were subjected to five modes of train and test random splits which

were:

1. 90 /10 (train/test) split

2. 80/20 (train/test) split

3. 70/30 (train/test) split

4. 60/40 (train/test) split

5. 50/50 (train/test) split

Figure 3.26 displays extracts of code for the train/test split applied in all the

machine learning models within the Python Colab environment. The stratify function

was utilized in all the codes as the data is imbalanced. Maintaining similar dataset

proportions in the training and testing sets is made easier with the help of the stratify

function. This feature helps create an impartial dataset and is especially helpful for

handling class imbalances, as observed in the drug review dataset employed in this

study.

Figure 3.26 Excerpt from Colab for 90/10 (train/test) split model.

3.7 FEATURE EXTRACTION

Algorithms of machine learning cannot work directly with text. Text must be

transformed into numerical values or more precisely vectors of numbers. This step is

known as feature extraction which is important in reducing the complexity of text data

which aids in the performance of machine learning models. There are few approaches

Pus
at

Sum
be

r

FTSM

59

of feature extraction. Four different feature extraction techniques were used in this

investigation for each model, and they are:

1. BOW (Bag of words)

2. TF-IDF unigram

3. TF-IDF bigram

4. TF-IDF trigram

Bag of words is the simplest form of text representation. This method groups

the features based on the occurrence of a word in the text disregarding the order of the

word in a review. Thus, one potential issue with BOW is that it prioritizes words that

appear frequently. As a result, words that appear frequently but are not very important

could be given preference. In this experiment, BOW model was implemented

using CountVectorizer() function from the Sk-learn library in the Colab environment

as shown in Figure 3.27.

Figure 3.27 Excerpt from Google Colab on the use of count vectorizer to implement
BOW as feature extraction

Term frequency-Inverse Document Frequency (TF-IDF) is a feature extraction

technique which is based on BOW. However, the TF-IDF method captures not only the

occurrence but also the importance of a term in the review. A sample code of the

employment tf-idf as feature is shown in Figure 3.28.

Figure 3.28 Excerpt from Google Colab on the use of tf-idf vectorizer as feature
extraction technique.

Pus
at

Sum
be

r

FTSM

60

3.8 MACHINE LEARNING MODELS

A total of eight machine learning models were selected for the classification task as

listed below:

1. Multinomial Naïve Bayes

2. Linear Support Vector Classifier

3. Linear Regression

4. Random Forest

5. Extra Trees

6. Decision Tress

7. Extreme Gradient Boost

8. K-Nearest Neighbour

3.9 PERFORMANCE METRICS

To evaluate the performance of classifier models, performance metrics code were

created using the sklearn.metrics in Colab environment. The medical conditions in the

drug reviews dataset which is the class attribute is highly imbalanced, therefore the

choice of accuracy to assess the performance of the models would be ineffective as it

has the tendency to mark a review to the majority class leading to incorrect results. The

reason is because accuracy is not a suitable metric to evaluate classifier if the dataset is

imbalanced. Hence, F1-score which is a combination of precision and recall was chosen

to evaluate the model performance as it punishes the extreme values more. Besides

measuring the F1-score, total time taken to train and test the models were also recorded

to assess duration of learning time by the classifiers. Nevertheless, for the purpose of

record keeping, accuracy, precision and recall were also measured.

3.10 PERFORMANCE EVALUATION

Based on the highest F1-score and time duration to test and train the models, the best

machine learning model for the classification was selected.

Pus
at

Sum
be

r

FTSM

61

3.11 TOOLS USED

Colab version 2.0 was used for this study, which is a Python development environment

that runs in the browser via Google Cloud. Power BI. Table 3.3 shows the tools used in

this study

Table 3.3 Tools Used

Tools Function

Colab version 2.0 Data cleaning – removal of missing values, checking duplicates

Exploratory data analysis – data visualization

Statistics for text review

Text preprocessing

Feature extraction

Perform classification task using machine learning models

Obtain performance metrics for analysis of classifiers

Excel workbook To record all the results that was produced by machine learning models

Power BI

Visualisation of all the results that was recorded in excel workbook

Pus
at

Sum
be

r

FTSM

CHAPTER IV

RESULTS

4.1 INTRODUCTION

In this section, the results of each model are presented in graph and table format. This

section further explains the apparent effect of using different train/split method, feature

extractors and the time taken to complete the codes by each machine learning models

4.2 MULTINOMIAL NAÏVE BAYES

Figure 4.1 F1-score and Total Time(s) by Feature Extractor and Algorithm for
MNB.

Pus
at

Sum
be

r

FTSM

63

Table 4.1 F1-score by algorithm and feature extractor for MNB

Feature
Algorithm
(train/test

ratio)
F1-score Accuracy Precision Recall

BOW 50/50 0.86 0.861 0.866 0.861

60/40 0.862 0.862 0.866 0.862

70/30 0.863 0.864 0.867 0.864

80/20 0.865 0.866 0.868 0.866

90/10 0.864 0.865 0.867 0.865

unigram 50/50 0.709 0.731 0.792 0.731

60/40 0.728 0.746 0.801 0.746

70/30 0.741 0.758 0.807 0.758

80/20 0.754 0.768 0.813 0.768

90/10 0.763 0.776 0.818 0.776

bigram 50/50 0.441 0.525 0.719 0.525

60/40 0.468 0.546 0.73 0.546

70/30 0.493 0.565 0.736 0.565

80/20 0.519 0.585 0.741 0.585

90/10 0.543 0.602 0.747 0.602

trigram 50/50 0.387 0.487 0.722 0.487

60/40 0.414 0.506 0.735 0.506

70/30 0.44 0.524 0.735 0.524

80/20 0.467 0.544 0.738 0.544

90/10 0.489 0.561 0.744 0.561

Table 4.2 Runtime (s) by algorithm and feature extractor for MNB

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 0.26 0.95 1.52 0.44

60/40 0.21 0.48 0.88 0.31

70/30 0.42 1.31 3.19 1.37

80/20 0.42 1.31 3.19 1.37

90/10 0.45 1.39 2.35 0.8

Based on table 4.1, the highest F1-score for the model was recorded under the BOW

feature extractor (0.87, 80/20 split) while the 90/10,70/30, 60/40, 50/50 splits of the

same feature extractor had the second highest F1-score at 0.86. The TF-IDF trigram

with a 50/50 split showed the lowest F1-score at 0.39, followed by the TF-IDF trigram

with a 60/40 split at 0.41. Subsequently, TF-IDF trigram (70/30 split) and TF-IDF

Pus
at

Sum
be

r

FTSM

64

bigram (50/50 split) both recorded an F1-score of 0.44. The highest F1-score (0.87) was

55% higher than the lowest F1-score (0.39). Among the feature extractors, BOW had

the highest average F1-score (0.86) followed by TF-IDF unigram (0.74) and TF-IDF

bigram (0.49). The lowest average of 0.44 was observed under TF-IDF trigram that was

48% lower than the highest feature extractor (BOW), and 40.5% lower than the highest

TF-IDF feature extractor (unigram).

Train/test split did not have any noticeable effect on F1-score of BOW feature

extractor. It was noted that, apart from BOW, all TF-IDF feature extractors

demonstrated an improvement in F1-score as the train/test split increased from 50/50 to

a 90/10 split (Figure 4.1). The 50/50 split was consistently the lowest among all TF-

IDF feature extractors while the 90/10 split was observed to have the highest F1-score.

The difference between maximum and minimum F1-score of the TF-IDF feature

extractors were lowest in unigram (7%) followed by bigram (22.7%), with trigram

having the highest difference of 25.6%.

From Table 4.2, the top two quickest model runtimes, recorded by the feature

extractor BOW, were 0.21 seconds (with a 60/40 split) and 0.26 seconds (with a 50/50

split). Following closely, TF-IDF unigram achieved a runtime of 0.31 seconds for the

60/40 split. Meanwhile, TF-IDF trigram feature extractors exhibited the lengthiest

runtimes for the models, with times of 3.19 seconds for 80/20 split, 2.35 seconds for

90/10 split, and 1.53 seconds for 70/30 split being the bottom three. The fastest runtime

(0.21s) was 93.4% higher than the slowest model (3.19s). Among the feature extractors,

BOW had the fastest average runtime (0.40s) followed by TF-IDF unigram (0.65s) and

TF-IDF bigram (0.98s). The slowest average runtime of 1.89s was observed under TF-

IDF trigram that was 88.8% lower than the fastest time (0.21s,) and 83.6% lower than

the quickest TF-IDF feature extractor (unigram). The effect of split has no noticeable

effect on the runtime, however 60/40 split consistently records lowest runtimes for all

the feature extractors at 0.21s (BOW), 0.31s (TF-IDF unigram), 0.48s (TF-IDF bigram)

and lastly 0.88s (TF-IDF trigram). The difference in time for 60/40 split between the

fastest time (0.31s) and slowest time (0.88s) is 64.7%.

Pus
at

Sum
be

r

FTSM

65

Figure 4.2 Confusion Matrix for MNB 90/10 with bigram

The confusion matrix (Figure 4.2) reveals the model's performance across

different classes. Each cell represents the number of instances where the true class

(rows) was predicted as the corresponding class (columns). The model excels at

identifying “Birth Control,” achieving a perfect 100% accuracy. However, it struggles

with “ADHD”, correctly classifying only 74 out of 451 instances. This could be due to

potential limitations where model might assume features are independent, which might

not be true for some classes.In addition, because the data is so severely unbalanced, the

model with more examples than the others is better able to forecast the dominating class

(birth control).

Pus
at

Sum
be

r

FTSM

66

4.3 LOGISTIC REGRESSION

Table 4.3 F1-score by algorithm and feature extractor for Logistic Regression

Feature
Algorithm
(train/test

ratio)
F1-score Accuracy

Precisio
n

Recall

BOW 50/50 0.89 0.887 0.887 0.887

60/40 0.9 0.897 0.897 0.897

70/30 0.89 0.887 0.887 0.887

80/20 0.91 0.911 0.911 0.911

90/10 0.92 0.918 0.918 0.918

unigram 50/50 0.88 0.876 0.877 0.876

60/40 0.88 0.879 0.88 0.879

70/30 0.88 0.876 0.877 0.876

80/20 0.88 0.884 0.884 0.884

90/10 0.89 0.886 0.887 0.886

bigram 50/50 0.89 0.886 0.889 0.886

60/40 0.89 0.893 0.895 0.892

70/30 0.89 0.886 0.889 0.886

80/20 0.9 0.905 0.906 0.905

90/10 0.91 0.91 0.911 0.91

trigram 50/50 0.88 0.886 0.888 0.886

60/40 0.89 0.894 0.896 0.894

70/30 0.88 0.886 0.888 0.886

80/20 0.91 0.908 0.91 0.908

90/10 0.92 0.915 0.917 0.915

Table 4.4 Runtime(s) by algorithm and feature extractor for Logistic Regression

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 36.38 154.59 373.61 21.13

60/40 46.24 185.73 475.42 25.93

70/30 62.73 277.46 706.82 34.70

80/20 92.08 361.23 1044.42 49.00

90/10 105.96 435.72 1105.45 54.22

Pus
at

Sum
be

r

FTSM

67

Figure 4.3 F1-score and Total Time(s) by Feature Extractor and Algorithm for
Logistic Regression

Figure 4.3 shows the F1-score and Total Time(s) by Feature Extractor and Algorithm

for Logistic Regression. LR model 90/10 split for BOW and TF-IDF (trigram) both

yielded highest F1-score at 0.92 (Table 4.3). The second highest F1-score was at 0.91

exhibited by BOW (80/20 split), TF-IDF bigram (90/10 split) and TF-IDF trigram

(80/20 split). The third highest F1-score was at 0.90, shown by BOW (60/40 split) and

TF-IDF bigram (80/20 split). The models which exhibited lowest F1-score at 0.88 were

TF-IDF unigram (50/50, 60/40, 70/30, 80/20 splits) while the second lowest F1-score

at 0.89 were BOW (50/50, 70/30 splits), TF-IDF unigram (90/10 split), TF-IDF bigram

(50/50, 60/40, 70/30 splits) and TF-IDF trigram (60/40 splits). The highest F1-score

(0.92) was 4.3% higher than the lowest F1-score (0.88). Except for TF-IDF unigram,

the remaining feature extractors (BOW, TF-IDF bigram and trigram) had an average

F1-score of 0.90 whereas lowest average F1-score 0.88 was displayed by TF-IDF

unigram with a 2.2% difference.

The top three quickest runtime was displayed by TF-IDF unigram feature

extractor with times at 21.13s (50/50 split), 25.93s (60/40 split), and 34.70s (70/30 split)

(Table 4.4). On the other hand, TF-IDF trigram logged the slowest time at 1105.45s

(70/30 split), followed by 1044.22 for 80/20 split and 706.82s for 70/30 split. The fastest

runtime (21.13s) was 98.08% higher than the slowest model (1105.45s). Within the

groups of feature extractors, TF-IDF unigram recorded shortest average model runtime

Pus
at

Sum
be

r

FTSM

68

at 37.00s followed by BOW at 68.68s and TF-IDF bigram at 282.95s. The longest

average runtime was at 741.14s displayed by TF-IDF trigram that was 95% lower than

the quickest feature extractor (TF- IDF unigram). Interestingly, all the feature extractors

showed increasing trend in runtime as the split increases from 50/50 to 90/10.

The 50/50 split had consistently the shortest runtime among all the splits while

the 90/10 split was observed to have the longest runtime. The difference between

maximum and minimum runtime of the splits were lowest in TF-IDF unigram (61%)

followed by TF-IDF bigram (64.5%), and BOW with 65.7%. TF-IDF had the highest

difference with 66.2%.

Figure 4.4 Confusion Matrix of LR with 90/10 split and bigram

The confusion matrix (Figure 4.4) reveals the model's performance on different

classes. While the model excels at identifying Birth Control with a near-perfect

accuracy of 98.7%, it struggles with Obesity, only correctly classifying 77% (364 out

of 476 instances) of cases. This lower accuracy compared to other classes might be due

to class imbalance with significantly fewer examples of “Obesity” compared to “Birth

Control”. This can bias the model towards the dominant class (Birth Control) due to the

abundance of training data. Although, Logistic Regression, by its nature, excels at

Pus
at

Sum
be

r

FTSM

69

handling linear relationships, it might struggle with classes requiring capturing non-

linear patterns or those with overlapping features. “Obesity” and similar classes (like

weight loss) might have overlapping features, making it difficult for the model to

distinguish them.

4.4 LINEAR SUPPORT VECTOR MACHINE

Table 4.5 F1-score by algorithm and feature extractor for Linear SVC

Feature
Algorithm (train/test

ratio)
F1-score Accuracy Precision Recall

BOW 50/50 0.88 0.883 0.883 0.883

60/40 0.9 0.895 0.895 0.895

70/30 0.92 0.915 0.915 0.915

80/20 0.92 0.915 0.915 0.915

90/10 0.93 0.926 0.925 0.926

unigram 50/50 0.89 0.889 0.889 0.889

60/40 0.89 0.895 0.894 0.895

70/30 0.91 0.905 0.905 0.905

80/20 0.91 0.905 0.905 0.905

90/10 0.91 0.91 0.909 0.91

bigram 50/50 0.92 0.915 0.915 0.915

60/40 0.93 0.926 0.926 0.926

70/30 0.95 0.946 0.946 0.946

80/20 0.95 0.946 0.946 0.946

90/10 0.96 0.957 0.956 0.957

trigram 50/50 0.92 0.916 0.916 0.916

60/40 0.93 0.927 0.928 0.927

70/30 0.95 0.947 0.947 0.947

80/20 0.95 0.947 0.947 0.947

90/10 0.96 0.957 0.957 0.957

Table 4.6 Runtime(s) by algorithm and feature extractor for Linear SVC

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 37.33 7.61 15.71 3.27

60/40 42.38 9.21 16.38 3.01

70/30 68.16 12.31 22.54 5.43

80/20 145.95 20.69 36.40 8.12

90/10 127.89 14.30 26.96 5.85

Pus
at

Sum
be

r

FTSM

70

Figure 4.5 F1-score and Total Time(s) by Feature Extractor and Linear SVC splits

Linear SVC model 90/10 split for both TF-IDF (bigram and trigram) yielded the highest

F1-score at 0.96 (Table 4.5). The second highest F1-score was at 0.95 exhibited by TF-

IDF trigram (80/20, 70/30/ split) and TF-IDF bigram (80/20, 70/30 split). The third

highest F1-score was at 0.93, displayed by BOW (90/10 split) and TF-IDF bigram

(80/20 split). BOW feature extractor of 50/50 split had the lowest F1-score (0.88),

followed by TF-IDF unigram (50/50 and 60/40) at 0.89 and lastly BOW (60/40 split)

model recorded third lowest F1-score at 0.90. The highest F1-score (0.96) was 8.3%

higher than the lowest F1-score(0.88).

In terms of average F1-score, TF-IDF bigram and trigram feature extraction

methods achieved the highest performance, both scoring 0.94. This surpassed the

performance of BOW at 0.91 and TF-IDF unigrams at 0.90. Within the feature

extractor, the gap between the best and worst performing configurations was 4.3%, with

an F1-score range from 0.90 to 0.94. Compared to the 4.3% spread within the feature

extractors, the BOW approach, as the second-worst performer, only reached 3.2%

below the top F1-score of 0.94 (TF-IDF bigram and trigram).

Pus
at

Sum
be

r

FTSM

71

The effect of split was seen on the F1-score as increment of train/test split model

moved from 50/50 to 90/10 (Figure 4.5). The peak average F1-score was observed at

0.94 (90/10 split) while the lowest average F1-score at 0.90 occurred with 50/50 split,

indicating a 4.2% difference. The average score of 80/20 and 70/30 split was 0.93

reflecting a decrease of 1.0% lower from the highest split which was 0.94 at 90/10 split.

Likewise, 60/40 split produced an average F1-score of 0.91, indicating a 3.2% decrease

compared to the highest split average (0.94).

The TF-IDF unigram stands out for its remarkable speed, completing the 60/40

split in a mere 3.01 seconds, making it the leader in terms of runtime efficiency (Table

4.6). The second and third fastest runtime were also clocked-in by TF-IDF unigram at

3.27s and 5.43s. BOW consistently produced slowest runtime across all the splits and

the lowest three clock-in time were at 145.95s (80/20 split), 127.89s (90/10 split) and

68.16s for 70/30 split. Feature extractor BOW (80/20 split) was 49 times slower than

the fastest TF-IDF unigram (3.01s). The average runtime of TF-IDF unigram is only

5.14s making it the most time efficient feature extractor which is about 94% faster than

the slowest feature extractor (BOW) with an average runtime at 84.34s. The TF-IDF

bigram clocks at 12.82s average runtime making it the second fastest feature extractor

with a difference of 60% from the fastest feature extractor (TF-IDF unigram).

Meanwhile, TF-IDF trigram had an average runtime of 23.60s making it 78.2% slower

than TF-IDF unigram (5.14s).

Pus
at

Sum
be

r

FTSM

72

Figure 4.6 Confusion matrix of linear SVC with F1-score and total time at 90/10 split
with tf-idf bigram

Figure 4.6 shows the confusion matrix of linear SVC. Overall, the model’s

performs well across most classes. Birth Control stands out with the highest F1-score

of 0.99, indicating exceptional classification accuracy. However, the model struggles

slightly with Obesity (F1-score 0.88) and Weight Loss (F1-score 0.89). This could be

due to data overlap where Obesity and Weight Loss might have features that overlap

with other health conditions. These classes might rely on more subjective features

compared to Birth Control. Birth Control data might have clearer, distinct features

compared to others, allowing the model to draw a sharper decision boundary between

positive and negative cases.

Pus
at

Sum
be

r

FTSM

73

4.5 RANDOM FOREST

Table 4.7 F1-score by algorithm and feature extractor for Random Forest

Feature
Algorithm (train/test

ratio)
F1-score Accuracy Precision Recall

BOW 50/50 0.89 0.892 0.893 0.892

60/40 0.9 0.905 0.906 0.905

70/30 0.92 0.921 0.921 0.921

80/20 0.93 0.935 0.935 0.935

90/10 0.94 0.944 0.944 0.944

unigram 50/50 0.89 0.892 0.892 0.892

60/40 0.91 0.908 0.908 0.908

70/30 0.92 0.919 0.92 0.919

80/20 0.93 0.935 0.935 0.935

90/10 0.94 0.945 0.945 0.945

bigram 50/50 0.88 0.878 0.88 0.878

60/40 0.89 0.895 0.897 0.895

70/30 0.91 0.912 0.913 0.912

80/20 0.92 0.925 0.926 0.925

90/10 0.94 0.94 0.941 0.94

trigram 50/50 0.87 0.873 0.875 0.873

60/40 0.89 0.89 0.892 0.89

70/30 0.91 0.906 0.908 0.906

80/20 0.92 0.923 0.924 0.923

90/10 0.94 0.936 0.936 0.936

Table 4.8 Runtime(s) by algorithm and feature extractor for Random Forest

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 153.11 1477.87 3537.47 142.29

60/40 208.40 1815.99 4307.28 200.17

70/30 265.17 2295.58 5855.48 240.53

80/20 352.89 3226.64 7981.62 319.98

90/10 406.43 3322.03 10005.65 357.77

Pus
at

Sum
be

r

FTSM

74

Figure 4.7 F1-score and Total Time(s) by Feature Extractor and Random Forest splits

Based on Table 4.7, Random Forest combined with BOW and TF-IDF (unigram,

bigram, trigram) achieved the highest F1-score of 0.94 using a 90/10 data split. This

was followed by 80/20 split for BOW and TF-IDF unigram producing F1-score of 0.93.

Subsequently, TF-IDF bigram and trigram with 80/20 split, and BOW and TF-IDF

unigram with 70/30 split, shared the third highest F1-score of 0.92. Compared to other

configurations, TF-IDF trigram and bigram with a 50/50 split underperformed and took

the bottom with an F1-score of 0.87 and 0.88 respectively. Following closely at third

lowest F1-score of 0.89 were models with 50/50 split (BOW and TF-IDF unigram) and

60/40 split (BOW and TF-IDF trigram). The top performer achieved an F1-score of

0.94, a 7.4% improvement over the weakest performing configuration (0.87). Among

the feature extraction techniques, BOW and TF-IDF unigram achieved the highest

average F1-score of 0.92. This outperformed TF-IDF trigram, which scored 0.90 (the

lowest) and TF-IDF bigram at 0.91 F1-score. There was only a 2.1% difference between

the best and worst performing feature extractor. Increasing the training data size

demonstrably boosted model performance, with the average F1-score climbing from

0.88 (50/50 split) to 0.94 (90/10 split). This translates to a 6.4% improvement.

Compared to the optimal 90/10 split, the 80/20 yielded slightly lower average F1-score

of 0.93, reflecting a 1.0% decrease while the 70/30 split achieved an average F1-score

of 0.91 with 3.2% decrease. Similarly, the 60/40 split suffered a 4.2% dip in

performance with F1-score of 0.90.

Pus
at

Sum
be

r

FTSM

75

Table 4.8 shows that TF-IDF unigram achieved the fastest time in completing

the train and test for 50/50 split model with a runtime of 142s. The second shortest

runtimes were recorded by BOW (50/50 split) at 153s while the third was recorded by

TF-IDF (60/40 split) at 200s. TF-IDF trigram produced longest two runtimes at 4307s

with 60/40 split ratio and 3537s with 50/50 split ration. The third longest runtime was

at 3322s produced by TF-IDF bigram with 90/10 split ratio.

The feature extractor with the lengthiest runtime (4307s), identified as TF-IDF

trigram (60/40), was 30 times slower than the fastest feature extractor, namely TF-IDF

unigram with a 50/50 split (142s). The feature extraction technique with the fastest

average speed was TF-IDF unigram at 250s which is about 25 times faster than the

slowest technique TF-IDF trigram at an average runtime of 6330s. The BOW clocks at

280s average runtime making it the second fastest feature extractor with a difference of

10.7% from the shortest average runtime (250s). Meanwhile, TF-IDF bigram had an

average runtime of 2420s making it 89.7% slower than TF-IDF unigram. Every 10%

increase in training data translated to a notable rise in the processing time (Figure 4.4).

The longest average runtime was observed at 3520s (90/10 split) while the shortest

average runtime was by 50/50 split with 1330s giving a 62.2% of time reduction. While

more training data generally led to slower training, the performance varied across

specific splits. The 60/40 split found a middle ground at 1630 seconds, while the 70/30

and 80/20 splits clocked in at 2160 seconds and 2970 seconds respectively. Pus
at

Sum
be

r

FTSM

76

Figure 4.8 Confusion matrix for Random Forest at 90/10 split with bag-of-words

Based on Figure 4.8, the model could identify classes such as birth- control (F1-

score : 0.98) and acne (F1-score : 0.97) efficiently. This could be due to clear separation

and balanced data in these classes. However, the model struggles to classify classes

such as obesity and weight -loss. Random Forests are powerful for complex data

patterns, but they might be less efficient than simpler models (like Linear SVC) for

well-separated classes.

Pus
at

Sum
be

r

FTSM

77

4.6 DECISION TREE

Table 4.9 F1-score by algorithm and feature extractor for Decision Tree

Feature
Algorithm (train/test

ratio)
F1-score

Accurac
y

Precisio
n

Recall

BOW 50/50 0.835 0.836 0.835 0.836

60/40 0.859 0.86 0.859 0.86

70/30 0.88 0.88 0.879 0.88

80/20 0.901 0.901 0.901 0.901

90/10 0.924 0.925 0.924 0.925

unigram 50/50 0.831 0.832 0.831 0.832

60/40 0.857 0.857 0.856 0.857

70/30 0.876 0.877 0.876 0.877

80/20 0.901 0.901 0.901 0.901

90/10 0.921 0.922 0.921 0.922

bigram 50/50 0.832 0.833 0.832 0.833

60/40 0.855 0.856 0.855 0.856

70/30 0.876 0.877 0.875 0.877

80/20 0.898 0.899 0.898 0.899

90/10 0.921 0.921 0.921 0.921

trigram 50/50 0.822 0.823 0.822 0.823

60/40 0.847 0.847 0.847 0.847

70/30 0.872 0.872 0.872 0.872

80/20 0.895 0.895 0.895 0.895

90/10 0.917 0.918 0.917 0.918

Table 4.10 Runtime (s) by algorithm and feature extractor for Decision Tree

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 30.82 197.7 659.2 41.15

60/40 36.14 189.55 617.54 46.98

70/30 49.23 289.41 1033.31 56.53

80/20 58.89 405.4 1128.49 97.62

90/10 71.68 378.41 1207.86 79.47

Pus
at

Sum
be

r

FTSM

78

Figure 4.9 F1-score and Total Time(s) by Feature Extractor and DT splits

A combination of Bag-of-Words (BOW) and TF-IDF features (unigrams, bigrams, and

trigrams) fed into a Decision Tree classifier yielded a top F1-score of 0.92 on a 90/10

training-testing split (Table 4.9). Following closely, the 80/20 split for BOW and TF-

IDF (unigram, bigram, trigram) yielded an F1-score of 0.90. In the third position, TF-

IDF (unigram and bigram) and BOW with a 70/30 split shared an F1-score of 0.88. In

contrast, all 50/50 split configurations performed less optimally, securing the bottom

three positions with F1-scores of 0.82 (TF-IDF trigram), 0.83 (TF-IDF unigram and

bigram), and finally, 0.84 (BOW). The top-performing configuration achieved an F1-

score of 0.92, marking a 10.9% improvement over the weakest performing

configuration (0.82). The average F1-score within the feature extractors did not differ

much as BOW and TF-IDF (unigram and bigram) achieved a score of 0.88 while TF-

IDF trigram had 0.87 F1-score with a mere difference of 1.1%. Notably, augmenting

the size of the training data substantially enhanced model performance, evidenced by

the average F1-score escalating from 0.83 (50/50 split) to 0.92 (90/10 split), indicating

a notable 9.7% improvement (Figure 4.5). In comparison to the optimal 90/10 split, the

80/20 split resulted in a slightly lower average F1-score of 0.92, indicating a 2.1%

decrease. The 70/30 split achieved an average F1-score of 0.88, reflecting a 4.3%

Pus
at

Sum
be

r

FTSM

79

decrease. Similarly, the 60/40 split experienced a 7.6% decline in performance, yielding

an F1-score of 0.85. BOW with 50/50 split model demonstrated the fastest completion

time for both the training and testing phases, achieving a runtime of 30.82s. The second

shortest runtimes were observed with BOW in the 60/40 split model at 36.14s, followed

by TF-IDF in the 50/50 split model at 41.15s. TF-IDF trigram recorded the longest

runtimes, with 1208s for the 90/10 split ratio and 1128s for the 80/20 split ratio. The

third longest runtime, at 1033s, was produced by TF-IDF bigram with a 70/30 split ratio.

The model with the lengthiest runtime (1208s), identified as TF-IDF trigram

(90/10), was 39 times slower than the fastest model, specifically TF-IDF unigram with

a 50/50 split (31s) (Table 4.10). The feature extraction technique with the fastest

average speed was BOW unigram at 49s, approximately 18 times faster than the slowest

technique, TF-IDF trigram, with an average runtime of 929s. Tf-IDF unigram had an

average runtime of 64s, making it the second fastest feature extractor with a difference

of 23% from the shortest average runtime 49s). Meanwhile, TF-IDF bigram had an

average runtime of 292s, making it 83% slower than BOW (49s). The influence of the

data split was visible in the average runtime, with test proportions ranging from 0.1 to

0.3, the models exhibited an increase in processing time. The split 90/10 had the longest

average runtime (434 seconds), followed by 80/20 (423 seconds) and 70/30 (357

seconds). Based on Figure 4.5, the effect is not visible in splits 50/50 and 60/40 since

the average runtime was shorter in test proportion 0.5 (232s) compared to 0.6 (223s).

The average runtime difference between the two the quickest (60/40) and

slowest(90/10) split ratios was 49%.

Pus
at

Sum
be

r

FTSM

80

Figure 4.10 Confusion Matrix of Decision Tree with 90/10 split using bigram

The confusion matrix of DT (Figure 4.10) indicated that the model's

performance varies across classes, excelling at identifying clear-cut conditions like

"Birth Control" and "Acne" but struggling with more nuanced ones like "Anxiety" and

"Obesity." This suggests the underlying data characteristics play a significant role in

F1-score variations. Decision trees, like the one used here, create simpler decision

boundaries compared to models like Random Forests. If a class like "Anxiety" involves

complex, non-linear relationships between features, the decision tree might struggle to

capture these nuances, leading to misclassifications and lower F1-scores. Decision trees

are susceptible to overfitting, especially if not properly regularized. This occurs when

the model becomes too focused on memorizing the training data instead of learning

generalizable patterns. Overfitting can lead to high accuracy on the training data but

poor performance on unseen data, potentially impacting the F1-score for specific

classes.

Pus
at

Sum
be

r

FTSM

81

4.7 EXTRA TREE

Table 4.11 F1-score by algorithm and feature extractor for Extra Tree

Feature
Algorithm (train/test

ratio)
F1-score Accuracy Precision Recall

BOW 50/50 0.89 0.894 0.895 0.894

60/40 0.91 0.908 0.908 0.908

70/30 0.92 0.921 0.921 0.921

80/20 0.93 0.935 0.935 0.935

90/10 0.95 0.949 0.949 0.949

unigram 50/50 0.9 0.897 0.898 0.897

60/40 0.91 0.912 0.912 0.912

70/30 0.92 0.923 0.923 0.923

80/20 0.94 0.938 0.938 0.938

90/10 0.95 0.948 0.948 0.948

bigram 50/50 0.89 0.888 0.89 0.888

60/40 0.9 0.902 0.903 0.902

70/30 0.91 0.915 0.915 0.915

80/20 0.93 0.93 0.93 0.93

90/10 0.94 0.943 0.943 0.943

trigram 50/50 0.88 0.883 0.884 0.883

60/40 0.9 0.898 0.899 0.898

70/30 0.91 0.913 0.913 0.913

80/20 0.93 0.928 0.928 0.928

90/10 0.94 0.94 0.941 0.94

Table 4.12 Runtime (s) by algorithm and feature extractor for Extra Tree

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 204.63 1645.89 4122.8 189.68

60/40 272.97 2565.94 6792.91 262.57

70/30 317.19 2965.8 7037.61 327.06

80/20 380.63 3346.05 7642.77 379.6

90/10 450.76 4080.03 10515.35 432.59

Pus
at

Sum
be

r

FTSM

82

Figure 4.11 F1-score and Total Time(s) by Feature Extractor and ET splits

The greatest F1-score, as shown in Table 4.11, is 0.95. The BOW and TF-IDF unigram

feature extractor using the 90/10 method were used to accomplish this. Closely behind,

an F1-score of 0.94 was obtained from the 90/10 split for TF-IDF (unigram, bigram,

trigram). With an 80/20 split, TF-IDF (bigram and trigram) and BOW shared the third

highest F1-score of 0.93. All 50/50 split configurations, on the other hand, did not

perform as well as they could have, earning the lowest three F1-scores (TF-IDF trigram:

0.88), (TF-IDF bigram and BOW: 0.89), and (TF-IDF unigram: 0.90). TF-IDF bigram

and trigram for 60/40 and Tf-IDF unigram for 50/50 split also displayed the third lowest

F1-score of 0.90. With a F1-score of 0.95, the best configuration outperformed the

worst, improving on it by 7.4% (F1-score = 0.88). Comparing the feature extraction

methods, TF-IDF bigram and trigram had lower average F1-score (0.91), compared to

TF-IDF unigram and BOW at 0.92. Separating the top and bottom performing feature

extractors at just 1%.

From Figure 4.6, expanding the training data set improved the model's

performance, as seen by the average F1-score rising from 0.89 (50/50 split) to 0.94

(90/10 split), a rise of 5.3%. Compared to the ideal 90/10 split, the 80/20 split produced

an average F1-score of 0.93, which is 1.0% less than the optimal split. An average F1-

Pus
at

Sum
be

r

FTSM

83

score of 0.92 was obtained by the 70/30 split, indicating a 2% decline. Likewise, the

60/40 split saw a 5% drop in performance, resulting in an F1-score of 0.89.

Based on Table 4.12 and Figure 4.6, the model with fastest runtime was the TF-

IDF unigram with 50/50 split which showed completion time at 190s. In the 50/50 split

model, BOW had the second-shortest runtimes at 204s, while in the 60/40 split model,

TF-IDF unigram had the third shortest runtimes at 262.57s. With 10515s for the 90/10

split ratio and 7642s for the 80/20 split ratio, the TF-IDF trigram had the longest

runtimes. The TF-IDF bigram with a 70/30 split ratio generated the third longest

runtime, measuring 7037s. TF-IDF trigram (90/10), the feature extractor with the

longest duration (10515s), was 55 times slower than TF-IDF unigram with a 50/50 split

(190s), which was the fastest feature extractor.

With an average duration of 7220s, TF-IDF trigram was the slowest feature

extraction technique, running around 23 times slower than the fastest, TF-IDF unigram,

with an average speed of 320s. With a 3% difference from the shortest average runtime

(320s), BOW's average runtime of 330s positioned it as the second quickest feature

extractor. With an average runtime of 2920s, TF-IDF bigram was 89% slower than the

fastest average runtime of 320s for TF-IDF unigram. Runtime analysis revealed that the

split data had an effect, with average processing time trending upwards with every 10%

increase in training data. While the 50/50 split had the least average runtime at 1540s,

indicating a 60% shorter average time compared to the longest average runtime that was

recorded at 3870s (90/10 split). Performance differed throughout splits, but in general,

training became slower with more data. While the splits of 70/30 and 60/40 clock in

average runtimes at 2660s and 2470s, respectively, the 70/30 split finds a medium

ground at 2660s.

Pus
at

Sum
be

r

FTSM

84

Figure 4.12 Confusion Matrix for Extra Tree with 90/10 split using bigram

From Figure 4.12, we can conclude that Extra Tree excels at classifying

straightforward classes like birth control (99.8% accuracy) but struggles with more

complex ones like obesity (82% accuracy) similar to Random Forest. While ET

introduce randomness in feature selection at each node split to potentially reduce

overfitting compared to RF, this difference seems to have minimal impact on F1-score

variations across classes in this case. The inherent characteristics of the data likely play

a more prominent role in the model's performance.

Pus
at

Sum
be

r

FTSM

85

4.8 EXTREME GRADIENT BOOST

Table 4.13 F1-score by algorithm and feature extractor for XG Boost

Feature
Algorithm (train/test

ratio)
F1-score Accuracy Precision Recall

BOW 50/50 0.88 0.881 0.883 0.881

60/40 0.89 0.885 0.888 0.885

70/30 0.89 0.887 0.89 0.887

80/20 0.89 0.889 0.892 0.889

90/10 0.89 0.889 0.893 0.889

unigram 50/50 0.88 0.884 0.886 0.884

60/40 0.89 0.889 0.891 0.889

70/30 0.89 0.892 0.893 0.892

80/20 0.9 0.897 0.898 0.897

90/10 0.9 0.897 0.9 0.897

bigram 50/50 0.88 0.883 0.885 0.883

60/40 0.89 0.888 0.89 0.888

70/30 0.89 0.892 0.893 0.892

80/20 0.9 0.896 0.898 0.896

90/10 0.9 0.898 0.901 0.898

trigram 50/50 0.88 0.88 0.881 0.88

60/40 0.89 0.886 0.887 0.886

70/30 0.89 0.89 0.891 0.89

80/20 0.89 0.895 0.896 0.895

90/10 0.9 0.897 0.899 0.897

Table 4.14 F1-score by algorithm and feature extractor for XG Boost

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 71.8 1813.78 3939.35 404.2

60/40 88.75 1979.03 4484.64 471.66

70/30 84.73 2168.48 4984.9 482.16

80/20 98.67 2420.77 5475.8 530.92

90/10 101.15 2584.91 5916.39 571.8

Pus
at

Sum
be

r

FTSM

86

Figure 4.13 F1-score and Total Time(s) by Feature Extractor and XGBoost splits

The F1-score performance of the XGBoost models varied little, as Table 4.13 and

Figure 4.13 illustrates. The TF-IDF (unigram, bigram, trigram) splits of 90/10 and 80/20

displayed the highest F1-score of 0.90 (unigram and bigram). These models—90/10

split of BOW, 80/20 split of BOW and TF-IDF trigram, 70/30 split of BOW and TF-

IDF (unigram, bigram, trigram), 60/40 split of BOW and TF-IDF unigram, bigram,

trigram, and 50/50 split—were not far behind, yielding an F1-score of 0.89. In the

meantime, every 50/50 split of TF-IDF and BOW obtained an F1-score of 0.88. In

summary, this means that there is only a 2.2% difference between the highest and lowest

F1-score, which fall between 0.88 and 0.90. Out of all the feature extraction methods,

TF-IDF bigram and BOW had the lowest average F1-score (0.91), while TF-IDF

trigram and unigram had the most (0.92). There was just 2.1% difference between the

top and bottom performing feature extractors. The XGBoost performance improved

when the training data set was increased, as seen by the average F1-score rising by 2.2%

from 0.88 (50/50 split) to 0.90(90/10 split). The average F1-score of 0.89 was obtained

for the 80/20, 70/30 and 60/40 splits which were only 1.1% lower than that of the

optimum 90/10 split.

In terms of runtime (Table 4.14), BOW placed first with 71.80 seconds (50/50

split), second with 84.73 seconds (70/30 split), and third with 88.75 seconds (60/40

split). Conversely, the TF-IDF trigram was consistently the feature extractor, taking the

longest time across all splits and finishing in the bottom three with runtimes of 5916s

Pus
at

Sum
be

r

FTSM

87

(90/10 split), 5476s (80/20 split), and 4985s (70/30 split). The feature extractor that

logged the shortest duration (71.80s) was BOW (50/50 split), which was 82 times faster

than the longest-logging TF-IDF trigram (5916s) with a 90/10 split.

With an average duration of 4960s, TF-IDF trigram was the slowest feature

extraction technique, running around 55 times slower than the fastest feature extractor,

BOW, with an average speed of 90s. With a 81.6% difference from the shortest average

runtime (BOW-90s), TF-IDF’s average runtime of 490s positioned it as the second

quickest feature extractor. With an average runtime of 2190s, TF-IDF bigram was

95.9% slower than the fastest feature extractor average runtime (BOW). Runtime

analysis revealed that the split data had an effect, with processing time trending upwards

with every 10% increase in training data. While the 50/50 split had the least average

runtime at 1560s, indicating a 31.9% reduction in time, the longest average runtime was

recorded at 2290s (90/10 split). Performance differed throughout splits, but in general,

training became slower with more data. While the splits of 80/20 and 60/40 clock in at

2130s and 1760 seconds, respectively, the 60/40 split finds a medium ground at 1930

seconds.

Figure 4.14 Confusion Matrix for XGBoost with 90/10 split using bigram

Pus
at

Sum
be

r

FTSM

88

Based on Figure 4.14, the XGBoost model achieved impressive results for

classes like "Birth Control" (F1-score: 0.98) and "Acne" (F1-score: 0.92). However, it

struggled with "Obesity" and "Weight Loss," only reaching an F1-score of 0.78 in these

categories. This could be be due to ’s k-nearest neighbour

4.9 K-NEAREST NEIGHBOUR (KNN)

Table 4.15 F1-score by algorithm and feature extractor for K-NN

Feature
Algorithm (train/test

ratio)
F1-score Accuracy Precision Recall

BOW 50/50 0.65 0.643 0.659 0.643

60/40 0.65 0.648 0.665 0.648

70/30 0.66 0.652 0.67 0.652

80/20 0.66 0.657 0.674 0.657

90/10 0.66 0.659 0.676 0.659

unigram 50/50 0.21 0.208 0.755 0.208

60/40 0.07 0.104 0.67 0.104

70/30 0.3 0.298 0.771 0.298

80/20 0.32 0.317 0.803 0.317

90/10 0.17 0.217 0.705 0.217

bigram 50/50 0.17 0.183 0.663 0.183

60/40 0.02 0.078 0.499 0.078

70/30 0.26 0.276 0.707 0.276

80/20 0.28 0.29 0.732 0.29

90/10 0.1 0.18 0.584 0.18

trigram 50/50 0.17 0.182 0.719 0.182

60/40 0.01 0.077 0.512 0.077

70/30 0.26 0.276 0.766 0.276

80/20 0.27 0.29 0.749 0.29

90/10 0.1 0.179 0.653 0.179

Pus
at

Sum
be

r

FTSM

89

Table 4.16 Runtime (s) by algorithm and feature extractor for K-NN

Algorithm
(train/test ratio)

BOW bigram trigram unigram

50/50 151.62 11006.75 20067.75 3157.72

60/40 140.46 10800.37 16568.28 3037.78

70/30 128.78 9493.36 19034.85 2644.22

80/20 94.50 7423.43 14875.59 2032.04

90/10 77.45 4230.91 8773.08 1162.24

Figure 4.15 F1-score and Total Time(s) by Feature Extractor and KNN splits

Based on Figure 4.15 and Table 4.15, KNN performance showed that an F1-score above

0.5 could only be achieved by using the BOW feature extractor. KNN combined with

BOW achieved top highest F1-score at 0.66 for splits 90/10, 80/20 and 70/30. Following

closely at the second place, BOW with 60/40 and 50/50 splits achieved F1-score of

0.65. The third highest F1-score, fell low at 0.32, displayed by TF-IDF unigram for

80/20 splits. Compared to other configurations, TF-IDF unigram, bigram, and trigram

with a 50/50 split underperformed and took the bottom three for the F1-score with an

0.01 (trigram), 0.02 (bigram) and 0.07 (unigram). The top performer achieved an F1-

score of 0.66, a 98.5% improvement over the weakest performing configuration (0.01).

Pus
at

Sum
be

r

FTSM

90

Among the feature extraction techniques, BOW achieved the highest average F1-score

of 0.66. This outperformed TF-IDF bigram and trigram, which scored 0.16 (the lowest)

and TF-IDF unigram at 0.21 F1-score. There was only a notable difference of 75.8%

between the best and worst performing feature extractor. The KNN model's

performance did not appear to improve with a larger training data set. For example, the

80/20 split had the highest average F1-score of 0.38, while the 60/40 split had the lowest

average F1-score of 0.17. This corresponds to a 55.2% discrepancy. The 70/30 split

produced a slightly lower average F1-score of 0.37, indicating a 2.6% decline,

compared to the highest average F1-score (0.38) 80/20 split, while the 50/50 split

showed an average F1-score of 0.30, indicating a 21% decrease. Likewise, the 60/40

split's F1-score of 0.19 indicated a 50% decline in performance.

Based on Table 4.16, the BOW feature extractor finished first in runtime with

77.45s (90/10 split), second with 94.50s (80/20 split), and third with 128.78s (70/30

split). The 60/40 split, on the other hand, required the most time with TF-IDF (unigram,

bigram, trigram) as feature extractors and finished in the bottom three with runtimes of

16568s, 10800s, and 3038s. The model with the shortest runtime (77.45s) was BOW

(90/10 split), which was 214 times faster than the slowest model, the TF-IDF trigram

(16568s) with a 60/40 split.

The slowest feature extraction approach, TF-IDF trigram, had an average

duration of 15860s, which was almost 132 times slower than the fastest feature

extractor, BOW, which had an average speed of 120s. The TF-IDF unigram average

runtime of 241s was the second quickest feature extractor, with a 50.2% difference from

the smallest average runtime (BOW-120s). The TF-IDF bigram average runtime

(8590s) was 98.6% slower than the fastest feature extractor average runtime (BOW).

The divided data had a minor effect on processing time, with processing time decreasing

with every 10% increase in training data (Figure 4.8). The 50/50 split had the longest

average runtime at 8600s, while the 90/10 split had the smallest average runtime at

3560s, a difference of 58.6%. While performance varied between split ratios, training

was progressively slower as data volume increased. Although the 60/40 and 70/30

divisions have clock times of 7830s and 7640 seconds, respectively, the 80/20 split ran

for an average of 6110 seconds.

Pus
at

Sum
be

r

FTSM

91

Figure 4.16 Confusion matrix of KNN with F1-score and total time at 60/40 split with
tf-idf trigram

Based on Figure 4.16, almost all classes have very low precision, recall, and F1-score,

indicating the KNN model is struggling to differentiate between classes effectively. The

call value of zero for classes “ADHD”, “Anxiety”, “Birth Control”, “Depression” and

“Obesity” indicates that the model is not identifying any true positive instances for those

classes. Almost all classes have very low precision, recall, and F1-score, indicating that

KNN model is struggling to differentiate between classes effectively. The possible

reasons for the low performance may be due to data imbalance, high feature

dimensionality or ambiguous features. Since KNN has shown very poor performance,

alternative models which are more robust such as Linear SVC could be considered for

this dataset.

Pus
at

Sum
be

r

FTSM

92

4.10 CONCLUSION

This section elaborated on the effects and results achieved by eight different machine

learning models using four different feature extractors and five train/test splits on drug

review dataset. In general, the results showed that the performance of Linear SVC is the

best whereas KNN showed the worst performance in terms of F1-score and total

processing time.

Pus
at

Sum
be

r

FTSM

CHAPTER V

DISCUSSION

5.1 INTRODUCTION

The machine learning algorithms chosen for the multi-class classification of conditions

in the drug review data set were Decision Tree, Extra Tree, K-nearest Neighbour,

Logistic Regression, Linear SVC, Multinomial Naïve Bayes, Random Forest, and

Extreme Gradient Boost. All these models were subjected to four types of feature

extraction techniques namely Bag-of-Words (BOW) and TF-IDF (unigram, bigram, and

trigram) to investigate effect of feature extraction techniques. Stratified random

sampling method with various test sizes (test/train ratio: 50/50, 60/40, 70/30, 80/20,

90/10) were employed to the models following the feature extraction techniques. The

split ratios of test and train datasets were experimented to observe the effect of train/test

dataset size on the classifier algorithms. The performance metrics chosen to evaluate

the classifiers were F1-score and total time taken to train and test the models. The

following section summarizes the overall results in terms of mean F1-score and average

performance time obtained by the selected models, feature extraction techniques and

sampling methods by visualizing into boxplot chart.

Pus
at

Sum
be

r

FTSM

94

5.2 COMPARISON OF F1-SCORE BY ALGORITHM

Figure 5.1 Comparison of classifier’s F1-score by feature extractor and algorithm.

Table 5.1 Comparison of classifier’s F1-score by algorithm

Based on Figure 5.1, the performance based on the F1-score, of the different feature

extractors and algorithms varied considerably. Looking at the mean F1-score for the

models (Table 5.1), except for KNN and MNB, all other machine learning models had

an F1-score of 0.88 and above. The lowest mean F1-score was by KNN (0.30) followed

by MNB with 0.63 whereas the highest mean F1-score of 0.92 was displayed by Linear

SVC and Extra Tree. Following closely, RF scored a second highest mean F1-score of

Algorithm BOW unigram bigram trigram
Mean F1-
score of

algorithm
Linear SVC 0.91 0.90 0.94 0.94 0.92

Extra Tree 0.92 0.92 0.91 0.91 0.92

Random Forest 0.92 0.92 0.91 0.90 0.91

Logistic
Regression

0.88 0.90 0.90 0.90 0.89

XG Boost 0.89 0.89 0.89 0.89 0.89

Decision tree 0.88 0.88 0.88 0.87 0.88

MNB 0.86 0.74 0.49 0.44 0.63

KNN 0.66 0.21 0.16 0.16 0.30

Mean F1-score
of feature
extractors

0.86 0.79 0.76 0.75

Pus
at

Sum
be

r

FTSM

95

0.91. Meanwhile the mean F1-score of XGB and LR were 0.89 followed by DT at 0.88.

The difference between the highest (average F1-score: 0.92) and the lowest average F1-

score (0.30) was 68%. There were also some variations in the spread of the F1-scores

for each feature extractor and algorithm. When looking at the minimum(min) and

maximum(max) F1-scores, the model with the highest min-max difference was KNN

with 0.50, followed by MNB at 0.42, whereas XGB showed zero min-max difference.

The rest of the classifiers only showed minimal difference at 0.01 (ET, DT), 0.02 (RF,

LR) and SVC (0.04). The model that achieved the highest maximum average F1-score

(all splits) was 0.94 by linear SVC with feature extractor TF-IDF trigram, whereas the

lowest average F1-score (0.16) was exhibited by KNN using the bigram and trigram

feature extraction technique.

The highest average F1-score of 0.96 was obtained using linear SVC with TF-

IDF bi gram and trigram with 90/10 train/test split (Table 4.5). This surpasses the

previous benchmark of 0.88 by Joshi and Abdelfattah (2021), who employed a similar

dataset (druglib.com and drug.com) and TF-IDF but with a 80/20 split to investigate

patient condition classification based on drug reviews. Notably, even the lowest F1-

score observed here (0.88) using linear SVC (bag-of-words with a 50/50 split) exceeds

Joshi and Abdelfattah (2021) highest score. While both studies share similarities in their

overall approach, the observed discrepancy in F1-score could stem from several factors.

Potential contributors include differences in the train/test split ratios employed for data

partition, the feature extraction techniques utilized (BOW, TF-IDF, Ngram), and the

text pre-processing steps implemented. It is noteworthy that this study used both

BeautifulSoup and Regular Expressions for text pre-processing, while Joshi and

Abdelfattah (2021) only used BeautifulSoup from the Python library. Among other

classifiers investigated by Joshi and Abdelfattah (2021) were, MNB, Logistic

Regression, Decision Trees, Extra Trees, and Random Forest with MNB and DT taking

the bottom two spots. Garg (2021) used the drug review dataset (drugs.com) for

sentiment analysis on six machine learning models (LR, MNB, linear SVC, perceptron,

ridge, SGD), also found that Linear SVC outperformed all other models with 93%

accuracy.

Pus
at

Sum
be

r

FTSM

96

On the other hand, Uddin et al. (2022), upon drug sentiment analysis on drug

review dataset, concluded that RF showed the best accuracy (94.06%) compared to

Multilayer Perceptron (86.82%), SVC(88.63%) and NB(88.57%) using 80/20 split

ratio. In the current study, RF showed promising results as the mean F1-score (0.91)

was second to linear SVC. Besides that, Gawich and Alfonse (2022), also concluded

that RF showed the best accuracy (0.86) for drug review analysis (drugs.com dataset)

comparing 10 different classifiers which includes , MNB, LR, DT, RF, KNN and linear

SVC with 70/30 ratio. The highest accuracy value achieved in the current study for RF

was 94.5% (90/10 split, TF-IDF unigram) giving a difference of 0.4%. Hossain et al.

(2020) compared linear SVC, DT and KNN to assess the accuracy of sentiment analysis

in drug review dataset and found that linear SVC performed better with accuracy

83.08% followed by DT (76.79%) and lastly KNN (55.41%). The performance of KNN

in this study is the worst (mean F1 -score : 0.30, highest F1-Score : 0.66 (Table 5.1)),

followed by MNB (mean F1-score: 0.63, highest F1-score : 0.87 (Table 5.1) when

compared to other classifiers. Parmar et al. (2023), also found that MNB performs the

worst when compared to LR, DT and RF classifier for drug quality classification using

sentiment analysis of drug reviews.

The XGBoost is not as popular as traditional machine learning models (MNB,

RF, LR, SVM, Tree classifiers) as it is not widely used in drug review datasets, however

it is being employed in text classification tasks. Qi (2020), compared five machine

learning models which includes, SVM, KNN, NB and XGBoost for the text

classification of theft crime. The results showed that XGBoost achieved highest F1-

score of 0.96 followed by NB (0.93), KNN (0.85) and SVM (0.81). However, in this

study, the best F1-score of XGBoost was 0.90 and the mean F1-score was 0.89. This

shows that XGBoost, with proper hyperparameter tuning has the potential to be used as

text classifier of drug review datasets. In summary, the box plot chart provides a good

overview of the performance of different feature extractors and algorithms on a

classification task. Linear SVC was the best performing algorithm in this case with its

best average F1-score at 0.94 (bigram and trigram) (Table 5.1).

Pus
at

Sum
be

r

FTSM

97

5.3 COMPARISON OF AVERAGE TOTAL RUNTIME BY ALGORITHM

Figure 5.2 Comparison of model’s run time by algorithm

Table 5.2 Average total time (s) by feature extractor and algorithm

Algorith
m

Decisio
n Tree

Extra
Tree

KNN
Linea

r
SVC

Logistic
Regressi

on

MN
B

Rando
m

Forest

XG
Boost

Mean
runtim

e by
feature
extract

or
BOW 49.35 325.24 118.56 84.34 68.68 0.40 277.20 89.02 127

unigram 64.35 318.30 2406.8
0

5.14 37.00 0.65 252.15 492.15 447

bigram 292.09 2920.7
4

8590.9
6

12.82 282.95 0.98 2427.6
2

2193.3
9

2090

trigram 929.28 7222.2
9

15863.
91

23.60 741.14 1.89 6337.5
0

4960.2
2

4510

Mean 333.77 2696.6
4

6745.0
6

31.48 282.44 0.98 2323.6
2

1933.6
9

Figure 5.2 and Table 5.2 illustrates the different runtimes taken by the classifiers to train

and test the drug review dataset. As shown in the boxplot chart, the MNB is the fastest

model to run with average runtime at 1.0s followed by linear svc at 31.5s. This was

followed by LR with average runtime at 282s and DT at 333s. LR showed that it is 15%

faster than DT. The mean runtime of XGB was 28% faster ET and 17% faster than RF.

Pus
at

Sum
be

r

FTSM

